scholarly journals The Flaveria bidentis β-Carbonic Anhydrase Gene Family Encodes Cytosolic and Chloroplastic Isoforms Demonstrating Distinct Organ-Specific Expression Patterns

2007 ◽  
Vol 144 (3) ◽  
pp. 1316-1327 ◽  
Author(s):  
Sasha G. Tetu ◽  
Sandra K. Tanz ◽  
Nicole Vella ◽  
James N. Burnell ◽  
Martha Ludwig
Amino Acids ◽  
2011 ◽  
Vol 42 (2-3) ◽  
pp. 831-841 ◽  
Author(s):  
Paola Fincato ◽  
Panagiotis N. Moschou ◽  
Abdellah Ahou ◽  
Riccardo Angelini ◽  
Kalliopi A. Roubelakis-Angelakis ◽  
...  

2003 ◽  
Vol 15 (2) ◽  
pp. 59-66 ◽  
Author(s):  
Sonia Madali Boseja Carolino ◽  
Juliana Rocha Vaez ◽  
André Southernman Teixeira Irsigler ◽  
Maria Anete S. Valente ◽  
Leonardo Augusto Zebral Rodrigues ◽  
...  

In contrast to yeast or mammalian counterpart, BiP (Binding Protein) from several plant species, such as maize, tobacco, Arabidopsis and soybean, is encoded by a multigene family. A systematic characterization and analysis of soybean BiP expression have provided evidence for the existence of multiple, complex regulatory mechanisms controlling plant BiP gene expression. In support of this observation, the soybean BiP gene family has been shown to exhibit organ-specific expression and differential regulation in response to abiotic stresses through distinct signaling pathways. As a member of the stress-regulated HSP70 family of protein, the elucidation of plant BiP function and regulation is likely to lead do new strategies to enhance crop tolerance to environmental stress. Consistent with this observation, transgenic plants overexpressing soybean BiP have demonstrated to exhibit increased tolerance to ER (endoplasmic reticulum) stressors during seed germination and enhanced tolerance to water deficit during plant growth.


2012 ◽  
Vol 71 (5) ◽  
pp. 753-760 ◽  
Author(s):  
Stephen R Planck ◽  
April Woods ◽  
Jenna S Clowers ◽  
Martin J Nicklin ◽  
James T Rosenbaum ◽  
...  

BackgroundUveitis, or inflammatory eye disease, is a common extra-articular manifestation of many systemic autoinflammatory diseases involving the joints. Anakinra (recombinant interleukin (IL)-1 receptor antagonist (Ra)) is an effective therapy in several arthritic diseases; yet, few studies have investigated the extent to which IL-1 signalling or IL-1Ra influences the onset and/or severity of uveitis.ObjectiveTo seek possible links between arthritis and uveitis pathogenesis related to IL-1 signalling.MethodsThe eyes of IL-1Ra-deficient BALB/c mice were monitored histologically and by intravital videomicroscopy to determine if uveitis developed along with the expected spontaneous arthritis in ankles and knees. Expression levels of IL-1R and its negative regulators (IL-1Ra, IL-1RII, IL-1RAcP and single Ig IL-1R-related molecule) in eye and joint tissues were compared. Differences in uveitis induced by intraocular injection of lipopolysaccharide (LPS) in mice lacking IL-1R or IL-1Ra were assessed.ResultsDeficiency in IL-1Ra predisposes to spontaneous arthritis, which is exacerbated by previous systemic LPS exposure. The eye, however, does not develop inflammatory disease despite the progressive arthritis or LPS exposure. Organ-specific expression patterns for IL-1Ra and negative regulators of IL-1 activity were observed that appear to predict predisposition to inflammation in each location in IL-1Ra knockout mice. The eye is extremely sensitive to locally administered LPS, and IL-1Ra deficiency markedly exacerbates the resulting uveitis.ConclusionThis study demonstrates that IL-1Ra plays an important role in suppressing local responses in eyes injected with LPS and that there is discordance between murine eyes and joints in the extent to which IL-1Ra protects against spontaneous inflammation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rehman Sarwar ◽  
Rui Geng ◽  
Lei Li ◽  
Yue Shan ◽  
Ke-Ming Zhu ◽  
...  

BRASSINAZOLE RESISTANT (BZR) are transcriptional factors that bind to the DNA of targeted genes to regulate several plant growth and physiological processes in response to abiotic and biotic stresses. However, information on such genes in Brassica napus is minimal. Furthermore, the new reference Brassica napus genome offers an excellent opportunity to systematically characterize this gene family in B. napus. In our study, 21 BnaBZR genes were distributed across 19 chromosomes of B. napus and clustered into four subgroups based on Arabidopsis thaliana orthologs. Functional divergence analysis among these groups evident the shifting of evolutionary rate after the duplication events. In terms of structural analysis, the BnaBZR genes within each subgroup are highly conserved but are distinctive within groups. Organ-specific expression analyses of BnaBZR genes using RNA-seq data and quantitative real-time polymerase chain reaction (qRT-PCR) revealed complex expression patterns in plant tissues during stress conditions. In which genes belonging to subgroups III and IV were identified to play central roles in plant tolerance to salt, drought, and Sclerotinia sclerotiorum stress. The insights from this study enrich our understanding of the B. napus BZR gene family and lay a foundation for future research in improving rape seed environmental adaptability.


2019 ◽  
Author(s):  
Natalia Joanna Woźniak ◽  
Christian Kappel ◽  
Cindy Marona ◽  
Lothar Altschmied ◽  
Barbara Neuffer ◽  
...  

AbstractWhether, and to what extent, phenotypic evolution follows predictable genetic paths, remains an important question in evolutionary biology. Convergent evolution of similar characters provides a unique opportunity to address this question. The transition to selfing and the associated changes in flower morphology are among the most prominent examples of repeated evolution in plants. Yet, to date no studies have directly compared the extent of similarities between convergent adaptations to selfing. In this study, we take advantage of the independent transitions to self-fertilization in the genus Capsella to test the existence of genetic and developmental constraints imposed on flower evolution in the context of the selfing syndrome. While C. rubella and C. orientalis have emerged independently, both have evolved almost identical flower characters. Not only the evolutionary outcome is identical but, in both cases, the same developmental strategies underlie the convergent reduction of flower size. This has been associated with convergent evolution of gene-expression changes. The transcriptomic changes common to both selfing lineages are enriched in genes with low-network connectivity and with organ-specific expression patterns. Comparative genetic mapping also indicates that, at least in the case of petal size evolution, these similarities are largely caused by mutations at the same loci. Together, these results suggest that the limited availability of low-pleiotropy paths predetermine closely related species to similar evolutionary outcomes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10379
Author(s):  
Xuwei Chen ◽  
Xinyang Wu ◽  
Shiyou Qiu ◽  
Hongying Zheng ◽  
Yuwen Lu ◽  
...  

Brassinazole-resistant (BZR) family genes encode plant-specific transcription factors (TFs), play essential roles in the regulation of plant growth and development, and have multiple stress-resistance functions. Nicotiana benthamiana is a model plant widely used in basic research. However, members of the BZR family in N. benthamiana have not been identified, and little is known about their function in abiotic stress. In this study, a total of 14 BZR members were identified in the N. benthamiana genome, which could be divided into four groups according to a phylogenetic tree. NbBZRs have similar exon-intron structures and conserved motifs, and may be regulated by cis-acting elements such as STRE, TCA, and ARE, etc. Organ-specific expression analysis showed that NbBZR members have different and diverse expression patterns in different tissues, and most of the members are expressed in roots, stems, and leaves. The analysis of the expression patterns in response to different abiotic stresses showed that all the tested NbBZR members showed a significant down-regulation after drought treatment. Many NbBZR genes also responded in various ways to cold, heat and salt stress treatments. The results imply that NbBZRs have multiple functions related to stress resistance.


2015 ◽  
Vol 15 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Sascha Dammeier ◽  
Sven Nahnsen ◽  
Johannes Veit ◽  
Frank Wehner ◽  
Marius Ueffing ◽  
...  

Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Roslyn M. Gleadow ◽  
Brian A. McKinley ◽  
Cecilia K. Blomstedt ◽  
Austin C. Lamb ◽  
Birger Lindberg Møller ◽  
...  

Abstract Main conclusion Developmental and organ-specific expression of genes in dhurrin biosynthesis, bio-activation, and recycling offers dynamic metabolic responses optimizing growth and defence responses in Sorghum. Abstract Plant defence models evaluate the costs and benefits of resource investments at different stages in the life cycle. Poor understanding of the molecular regulation of defence deployment and remobilization hampers accuracy of the predictions. Cyanogenic glucosides, such as dhurrin are phytoanticipins that release hydrogen cyanide upon bio-activation. In this study, RNA-seq was used to investigate the expression of genes involved in the biosynthesis, bio-activation and recycling of dhurrin in Sorghum bicolor. Genes involved in dhurrin biosynthesis were highly expressed in all young developing vegetative tissues (leaves, leaf sheath, roots, stems), tiller buds and imbibing seeds and showed gene specific peaks of expression in leaves during diel cycles. Genes involved in dhurrin bio-activation were expressed early in organ development with organ-specific expression patterns. Genes involved in recycling were expressed at similar levels in the different organ during development, although post-floral initiation when nutrients are remobilized for grain filling, expression of GSTL1 decreased > tenfold in leaves and NITB2 increased > tenfold in stems. Results are consistent with the establishment of a pre-emptive defence in young tissues and regulated recycling related to organ senescence and increased demand for nitrogen during grain filling. This detailed characterization of the transcriptional regulation of dhurrin biosynthesis, bioactivation and remobilization genes during organ and plant development will aid elucidation of gene regulatory networks and signalling pathways that modulate gene expression and dhurrin levels. In-depth knowledge of dhurrin metabolism could improve the yield, nitrogen use efficiency and stress resilience of Sorghum.


Sign in / Sign up

Export Citation Format

Share Document