scholarly journals A GmSIN1/GmNCED3s/GmRbohBs Feed-Forward Loop Acts as a Signal Amplifier That Regulates Root Growth in Soybean Exposed to Salt Stress

2019 ◽  
Vol 31 (9) ◽  
pp. 2107-2130 ◽  
Author(s):  
Shuo Li ◽  
Nan Wang ◽  
Dandan Ji ◽  
Wenxiao Zhang ◽  
Ying Wang ◽  
...  
Author(s):  
Pascal A. Pieters ◽  
Bryan L. Nathalia ◽  
Ardjan J. van der Linden ◽  
Peng Yin ◽  
Jongmin Kim ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


2015 ◽  
Vol 75 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Wen-Qi Guo ◽  
Pei-Tong Zhang ◽  
Chun-Hong Li ◽  
Jian-Mei Yin ◽  
Xiao-Yong Han

2004 ◽  
Vol 129 (2) ◽  
pp. 188-192 ◽  
Author(s):  
N. Bernstein ◽  
A. Meiri ◽  
M. Zilberstaine

In most crop species, growth of the shoot is more sensitive to salt stress than root growth. Avocado [Persea americana Mill.] is very sensitive to NaCl stress. Even low concentrations of salt (15 mm) inhibit tree growth and decrease productivity. Observations in experimental orchards have suggested that root growth in avocado might be more restricted by salinity than shoot growth. In the present study, we evaluated quantitatively the inhibitory effects of salt stress on growth of the avocado root in comparison to the shoot. Seedling plants of the West-Indian rootstock `Degania 117' were grown in complete nutrient solution containing 1, 5, 15, or 25 mm NaCl. The threshold NaCl concentration causing root and shoot growth reduction occurred between 5 and 15 mm. At all concentrations, root growth was much more sensitive to salinity than shoot growth. A concentration of 15 mm NaCl, which did not affect the rate of leaf emergence on the plant and decreased leaf biomass production only 10%, induced a 43% reduction in the rate of root elongation and decreased root volumetric growth rate by 33%. Under 25 mm NaCl, leaf biomass production, leaf initiation rate and leaf elongation rate were reduced 19.5%, 12%, and 5%, respectively, while root volumetric growth and root elongation rate were reduced 65% and 75%, respectively. This strong root growth inhibition is expected to influence the whole plant and therefore root growth under salinity should be considered as an important criterion for rootstocks' tolerance to NaCl.


2013 ◽  
Vol 123 (7) ◽  
pp. 3183-3183 ◽  
Author(s):  
Sampurna Chatterjee ◽  
Lukas C. Heukamp ◽  
Maike Siobal ◽  
Jakob Schöttle ◽  
Caroline Wieczorek ◽  
...  

2021 ◽  
Author(s):  
liang xu ◽  
Jia-Qian Song ◽  
yuelin wang ◽  
Xiao-Han Liu ◽  
Xue-Li Li ◽  
...  

Abstract Plants have evolved a lot of strategies to improve salt tolerance to cope with salt stress. Recent studies have suggested that thymol (a nature medicine) enhances the plant tolerance against abiotic stresses, but the mechanisms are rarely known. Here, we found that thymol played an important role in maintaining root growth under salt stress. Thymol rescued root growth from salt stress via ameliorating ROS (reactive oxygen species) accumulation, lipid peroxidation, and cell death. In addition, thymol enhanced the level of NO (nitric oxide) and GSH (glutathione) to repress ROS accumulation, further protecting the stability of cell membrane. Thymol-induced Na+ efflux in roots and leaves under salt stress may depend on the upregulation of SOS1, HKT1 and NHX1. Consequently, all of these evidences suggested that thymol improved tobacco salt tolerance via enhancing NO and GSH content as well as inducing Na+ efflux.


Sign in / Sign up

Export Citation Format

Share Document