Correcting electron-density resolution bias in reciprocal space

Author(s):  
Angela Altomare ◽  
Corrado Cuocci ◽  
Carmelo Giacovazzo ◽  
Sabino Maggi ◽  
Anna Moliterni ◽  
...  
1999 ◽  
Vol 55 (6) ◽  
pp. 1174-1178 ◽  
Author(s):  
Thomas C. Terwilliger

It has previously been shown that the presence of distinct regions of solvent and protein in macromolecular crystals leads to a high value of the standard deviation of local r.m.s. electron density and that this can in turn be used as a reliable measure of the quality of macromolecular electron-density maps [Terwilliger & Berendzen (1999a). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a similar measure, \sigma_{R}^{2}, the variance of the local roughness of the electron density, can be calculated in reciprocal space. The formulation is suitable for rapid evaluation of macromolecular crystallographic phases, for phase improvement and for ab initio phasing procedures.


1999 ◽  
Vol 55 (3) ◽  
pp. 363-374 ◽  
Author(s):  
B. B. Iversen ◽  
F. K. Larsen ◽  
A. A. Pinkerton ◽  
A. Martin ◽  
A. Darovsky ◽  
...  

Extensive synchrotron (28 K) and conventional sealed-tube (9 K) X-ray diffraction data have been collected on tetrakis(dimethylphosphinodithioato-S,S′)thorium(IV), [Th(S2PMe2)4]. The use of very low temperatures, well below those obtained with liquid-nitrogen cooling, is crucial for the accuracy of the data. This is due to minimization of temperature-dependent systematic errors such as TDS and anharmonicity, and extension and intensification of the data in reciprocal space. Comparison of structural parameters derived separately from the sealed-tube data and the synchrotron data shows good agreement. The synchrotron data are markedly superior when comparing refinement residuals, standard uncertainties (s.u.'s) of the data and s.u.'s of the derived parameters. However, the study suggests that there are still small uncorrected systematic errors in the data. The very large extent [(\sin\theta/\lambda)max = 1.77 Å−1] of the synchrotron data and the very low temperature at which they were collected makes it possible to separate anharmonic effects from electron-deformation effects even with only an X-ray data set at a single temperature. The electron density shows a large polarization of the outer Th core of d-type symmetry. This deformation is successfully modelled with contracted multipolar functions, which are only slightly correlated with anharmonic expansions in reciprocal space when using the full extent of the data. In the data collection more than a factor of 100 in speed is gained by use of image-plate area detectors at the synchrotron source compared with conventional sequential measurements. Thus accurate, very low temperature synchrotron-radiation diffraction data can now be measured within days, which makes electron-density studies of compounds beyond the first transition series more frequently within reach.


Author(s):  
Carmelo Giacovazzo

According to the basic principles of structural crystallography, stated in Section 1.6: (i) it is logically possible to recover the structure from experimental diffraction moduli; (ii) the necessary information lies in the diffraction amplitudes themselves, because they depend on interatomic vectors. The first systematic approach to structure determination based on the above principle was developed by Patterson (1934a,b). In the small molecule field related techniques, even if computerized (Mighell and Jacobson, 1963; Nordman and Nakatsu, 1963), were relegated to niche by the advent of direct methods. Conversely, in macromolecular crystallography, they survived and are still widely used today. Nowadays, Patterson techniques have been reborn as a general phasing approach, valid for small-, medium-, and large-sized molecules. The bases of Patterson methods are described in Section 10.2; in Section 10.3 some methods for Patterson deconvolution (i.e. for passing from the Patterson map to the correct electron density map) are described, and in Section 10.4 some applications to ab initio phasing are summarized. The use of Patterson methods in non-ab initio approaches like MR, SAD-MAD, or SIR-MIR are deferred to Chapters 13 to 15. We do not want to leave this chapter without mentioning some fundamental relations between direct space properties and reciprocal space phase relationships. Patterson, unlike direct methods, seek their phasing way in direct space; conversely, DM are the counterpart, in reciprocal space, of some direct space properties (positivity, atomicity, etc.). One may wonder if, by Fourier transform, it is possible to immediately derive phase information from such properties, without the heavy probabilistic machinery. In Appendix 10.A, we show some of many relations between electron density properties and phase relationships, and in Appendix 10.B, we summarize some relations between Patterson space and phase relationships. Patterson (1949) defined a second synthesis, known as the Patterson synthesis of the second kind. Even if theoretically interesting, it is of limited use in practice. We provide information on this in Appendix 10.C.


2019 ◽  
Vol 11 (5) ◽  
pp. 621-629
Author(s):  
Kulpash Iskakova ◽  
Rif Akhmaltdinov ◽  
Temirgali Kuketaev ◽  
Vladimir Kosov

The article deals with the choice of clusters based on a more detailed study of the GaAs structure and computer simulation of the physical properties of stable clusters. An instrumental concept of the interspheral space is introduced, which has certain features that distinguish it from the commonly used the lattice of the crystal cores. The parameters describing the forward and reciprocal spaces are determined by quasi-bound states in the corresponding spaces: in forward space—the number and location of the structural elements of the cluster; in the reciprocal space—the electron density and energy values. An approach with the use of the notion of an interspheral space on the structure of GaAs clusters and the results of a computer-analytic study that gives a solution to the equation of an interspheral oscillator is discussed.


1999 ◽  
Vol 55 (11) ◽  
pp. 1863-1871 ◽  
Author(s):  
Thomas C. Terwilliger

Solvent flattening is a powerful tool for improving crystallographic phases for macromolecular structures obtained at moderate resolution, but uncertainties in the optimal weighting of experimental phases and modified phases make it difficult to extract all the phase information possible. Solvent flattening is essentially an iterative method for maximizing a likelihood function which consists of (i) experimental phase information and (ii) information on the likelihood of various arrangements of electron density in a map, but the likelihood function is generally not explicitly defined. In this work, a procedure is described for reciprocal-space maximization of a likelihood function based on experimental phases and characteristics of the electron-density map. The procedure can readily be applied to phase improvement based on solvent flattening and can potentially incorporate information on a wide variety of other characteristics of the electron-density map.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Author(s):  
Corazon D. Bucana

In the circulating blood of man and guinea pigs, glycogen occurs primarily in polymorphonuclear neutrophils and platelets. The amount of glycogen in neutrophils increases with time after the cells leave the bone marrow, and the distribution of glycogen in neutrophils changes from an apparently random distribution to large clumps when these cells move out of the circulation to the site of inflammation in the peritoneal cavity. The objective of this study was to further investigate changes in glycogen content and distribution in neutrophils. I chose an intradermal site because it allows study of neutrophils at various stages of extravasation.Initially, osmium ferrocyanide and osmium ferricyanide were used to fix glycogen in the neutrophils for ultrastructural studies. My findings confirmed previous reports that showed that glycogen is well preserved by both these fixatives and that osmium ferricyanide protects glycogen from solubilization by uranyl acetate.I found that osmium ferrocyanide similarly protected glycogen. My studies showed, however, that the electron density of mitochondria and other cytoplasmic organelles was lower in samples fixed with osmium ferrocyanide than in samples fixed with osmium ferricyanide.


Author(s):  
M.A. O'Keefe ◽  
Sumio Iijima

We have extended the multi-slice method of computating many-beam lattice images of perfect crystals to calculations for imperfect crystals using the artificial superlattice approach. Electron waves scattered from faulted regions of crystals are distributed continuously in reciprocal space, and all these waves interact dynamically with each other to give diffuse scattering patterns.In the computation, this continuous distribution can be sampled only at a finite number of regularly spaced points in reciprocal space, and thus finer sampling gives an improved approximation. The larger cell also allows us to defocus the objective lens further before adjacent defect images overlap, producing spurious computational Fourier images. However, smaller cells allow us to sample the direct space cell more finely; since the two-dimensional arrays in our program are limited to 128X128 and the sampling interval shoud be less than 1/2Å (and preferably only 1/4Å), superlattice sizes are limited to 40 to 60Å. Apart from finding a compromis superlattice cell size, computing time must be conserved.


Sign in / Sign up

Export Citation Format

Share Document