X-ray intensity patterns from finite perfect crystals

1999 ◽  
Vol 55 (6) ◽  
pp. 1000-1013
Author(s):  
Gunnar Thorkildsen ◽  
Helge B. Larsen

A theoretical study dealing with intensity interference patterns from the exit surfaces of finite perfect t\times l crystals has been undertaken using the Takagi–Taupin equations and the Riemann–Green technique. Numerical simulations have been performed for the 220 reflection in diamond allowing for different types of amplitude-modulated incoming plane waves. The effects caused by limiting the waves by a slit system are also discussed. The results show strong influence of the lateral crystal boundaries and are closely related to the geometrical region structures formed by the characteristic lines associated with the equations. In the limit of a semi-infinite crystal, the Borrmann–Lehmann interference patterns are retrieved.

1971 ◽  
Vol 15 ◽  
pp. 240-253 ◽  
Author(s):  
Cullie J. Sparks

X-ray diffraction patterns using continuous radiation from copper and tungsten target x-ray tubes and detected with a Si(Li) energy analysis system are presented. Errors caused by a misaligned diffractometer and x-ray penetration into the sample are shown to be more difficult to correct and larger in magnitude than errors arising from energy calibration. All these errors can be minimized by mixing a standard with the unknown sample.The energy resolution of the detector influences the breadth of the diffraction peaks more strongly than the standard slit systems available with commercial diffractometers. Thus, to reduce the recording time and maintain the same standard deviation for the data, one should increase the sizes of the front and receiving slits including the Soller slits. X-ray energy diffraction patterns can be recorded with standard deviations less than +0.001 Å in the d spacing with only 200 sec measurement time using the standard diffractometer slit system. Copper targets are probably as useful as tungsten even though the continuous intensity is about three times.less. Copper has fewer interfering characteristic lines, and its use permits convenient conversion to normal θ scanning diffractometer operation.


2018 ◽  
Vol 11 (2) ◽  
pp. 83-93
Author(s):  
Denisa Cagardová ◽  
Martin Michalík ◽  
Peter Poliak ◽  
Vladimír Lukeš

Abstract A systematic theoretical study using density functional theory is presented to estimate the structural, electronic, and charge-transfer characteristics of a symmetric fluorination of acenequinones outer rings. The change in aromaticity of model derivatives was described by different types of aromaticity indices. By considering a hopping mechanism and using the Marcus theory in combination with the Einstein-Smoluchowski relation, electronic drift mobilities were predicted for selected dimer configurations obtained from X-ray structures of anthraquinone, 6,13-pentacenequinone and its octafluorinated derivatives. The analysis of obtained data showed that the fluorination of the outer rings of acenequinones can lower the energy of the lowest unoccupied molecular orbital to the range from −3.0 to −4.0 eV, i.e. typical for organic n-type semiconducting materials. Finally, potential electric semiconductivity of available X-ray structures relating to drift mobilities was discussed.


Author(s):  
K. A. Brookes ◽  
D. Finbow ◽  
Madeleine Samuel

Investigation of the particulate matter contained in the water sample, revealed the presence of a number of different types and certain of these were selected for analysis.An A.E.I. Corinth electron microscope was modified to accept a Kevex Si (Li) detector. To allow for existing instruments to be readily modified, this was kept to a minimum. An additional port is machined in the specimen region to accept the detector, with the liquid nitrogen cooling dewar conveniently housed in the left hand cupboard adjacent to the microscope column. Since background radiation leads to loss in the sensitivity of the instrument, great care has been taken to reduce this effect by screening and manufacturing components that are near the specimen from material of low atomic number. To change from normal transmission imaging to X-ray analysis, the special 4-position specimen rod is inserted through the normal specimen airlock.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Adrian Szewczyk ◽  
Adrianna Skwira ◽  
Marta Ginter ◽  
Donata Tajer ◽  
Magdalena Prokopowicz

Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.


2006 ◽  
Vol 2 (S238) ◽  
pp. 475-476
Author(s):  
Alexander F. Zakharov

AbstractRecent X-ray observations of microquasars and Seyfert galaxies reveal broad emission lines in their spectra, which can arise in the innermost parts of accretion disks. Recently Müller & Camenzind (2004) classified different types of spectral line shapes and described their origin. Zakharov (2006b) clarified their conclusions about an origin of doubled peaked and double horned line shapes in the framework of a radiating annulus model and discussed s possibility to evaluate black hole parameters analyzing spectral line shapes.


Sign in / Sign up

Export Citation Format

Share Document