A new crystal form of MshB fromMycobacterium tuberculosiswith glycerol and acetate in the active site suggests the catalytic mechanism

2012 ◽  
Vol 68 (11) ◽  
pp. 1450-1459 ◽  
Author(s):  
Simon Gareth Broadley ◽  
James Conrad Gumbart ◽  
Brandon William Weber ◽  
Mohlopheni Jackson Marakalala ◽  
Daniel Jacobus Steenkamp ◽  
...  

MshB, a zinc-based deacetylase, catalyses a step in the mycothiol biosynthetic pathway that involves the deacetylation of 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcNAc-Ins),viacleavage of an amide bond, to 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcN-Ins) and acetate. In this study, MshB was expressed, purified and crystallized. A new crystal form was encountered in 0.1 Msodium acetate, 0.2 Mammonium sulfate, 25% PEG 4000 pH 4.6. The crystals diffracted to 1.95 Å resolution and the resulting electron-density map revealed glycerol and the reaction product, acetate, in the active site. These ligands enabled the natural substrate GlcNAc-Ins to be modelled in the active site with some certainty. One acetate O atom is hydrogen bonded to Tyr142 and is located 2.5 Å from the catalytic zinc. The other acetate O atom is located 2.7 Å from a carboxylate O atom of Asp15. This configuration strongly suggests that Asp15 acts both as a general base catalyst in the nucleophilic attack of water on the amide carbonyl C atom and in its protonated form acts as a general acid to protonate the amide N atom. The configuration of Tyr142 differs from that observed previously in crystal structures of MshB (PDB entries 1q74 and 1q7t) and its location provides direct structural support for recently published biochemical and mutational studies suggesting that this residue is involved in a conformational change on substrate binding and contributes to the oxyanion hole that stabilizes the tetrahedral intermediate.


1995 ◽  
Vol 312 (3) ◽  
pp. 979-985 ◽  
Author(s):  
E Bause ◽  
W Breuer ◽  
S Peters

Oligosaccharyltransferase (OST), an integral component of the endoplasmic-reticulum membrane, catalyses the transfer of dolichyl diphosphate-linked oligosaccharides to specific asparagine residues forming part of the Asn-Xaa-Thr/Ser sequence. We have studied the binding and catalytic properties of the enzyme from pig liver using peptide analogues derived from the acceptor peptide N-benzoyl-Asn-Gly-Thr-NHCH3 by replacing either asparagine or threonine with amino acids differing in size, stereochemistry, polarity and ionic properties. Acceptor studies showed that analogues of asparagine and threonine with bulkier side chains impaired recognition by OST. Reduction of the beta-amide carbonyl group of asparagine yielded a derivative that, although not glycosylated, was strongly inhibitory (50% inhibition at approximately 140 microM). This inhibition may be due to ion-pair formation involving the NH3+ group and a negatively charged base at the active site. Hydroxylation of asparagine at the beta-C position increased Km and decreased Vmax, indicating an effect on both binding and catalysis. The threo configuration at the beta-C atom of the hydroxyamino acid was essential for substrate binding. A peptide derivative obtained by replacement of the threonine beta-hydroxy group with an NH2 group was found to display acceptor activity. This shows that the primary amine is able to mimic the hydroxy group during transglycosylation. The pH optimum with this derivative is shifted by approximately 1 pH unit towards the basic region, indicating that the neutral NH2 group is the reactive species. The various data are discussed in terms of the catalytic mechanism of OST, particular emphasis being placed on the role of threonine/serine in increasing the nucleophilicity of the beta-amide of asparagine through hydrogen-binding.



2001 ◽  
Vol 276 (15) ◽  
pp. 11698-11704 ◽  
Author(s):  
Pär L. Pettersson ◽  
Bengt Mannervik

Human glutathione transferase (GST) A1-1 efficiently catalyzes the isomerization of Δ5-androstene-3,17-dione (AD) into Δ4-androstene-3,17-dione. High activity requires glutathione, but enzymatic catalysis occurs also in the absence of this cofactor. Glutathione alone shows a limited catalytic effect.S-Alkylglutathione derivatives do not promote the reaction, and the pH dependence of the isomerization indicates that the glutathione thiolate serves as a base in the catalytic mechanism. Mutation of the active-site Tyr9into Phe significantly decreases the steady-state kinetic parameters, alters their pH dependence, and increases the pKavalue of the enzyme-bound glutathione thiol. Thus, Tyr9promotes the reaction via its phenolic hydroxyl group in protonated form. GST A2-2 has a catalytic efficiency with AD 100-fold lower than the homologous GST A1-1. Another Alpha class enzyme, GST A4-4, is 1000-fold less active than GST A1-1. The Y9F mutant of GST A1-1 is more efficient than GST A2-2 and GST A4-4, both having a glutathione cofactor and an active-site Tyr9residue. The active sites of GST A2-2 and GST A1-1 differ by only four amino acid residues, suggesting that proper orientation of AD in relation to the thiolate of glutathione is crucial for high catalytic efficiency in the isomerization reaction. The GST A1-1-catalyzed steroid isomerization provides a complement to the previously described isomerase activity of 3β-hydroxysteroid dehydrogenase.



2001 ◽  
Vol 307 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Peter T Beernink ◽  
Brent W Segelke ◽  
Masood Z Hadi ◽  
Jan P Erzberger ◽  
David M Wilson ◽  
...  


2006 ◽  
Vol 188 (3) ◽  
pp. 1143-1154 ◽  
Author(s):  
Sarah H. Lawrence ◽  
Kelvin B. Luther ◽  
Hermann Schindelin ◽  
James G. Ferry

ABSTRACT Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD ], 20 μM) and low-affinity (KD , 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3884
Author(s):  
Xixi Wang ◽  
Jiankai Shan ◽  
Wei Liu ◽  
Jing Li ◽  
Hongwei Tan ◽  
...  

In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6–N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.



2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riley B. Peacock ◽  
Taylor McGrann ◽  
Marco Tonelli ◽  
Elizabeth A. Komives

AbstractSerine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.



2021 ◽  
Vol 22 (9) ◽  
pp. 4769
Author(s):  
Pablo Maturana ◽  
María S. Orellana ◽  
Sixto M. Herrera ◽  
Ignacio Martínez ◽  
Maximiliano Figueroa ◽  
...  

Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer’s, Parkinson’s, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michał Zieliński ◽  
Jaeok Park ◽  
Barry Sleno ◽  
Albert M. Berghuis

AbstractMacrolides are a class of antibiotics widely used in both medicine and agriculture. Unsurprisingly, as a consequence of their exensive usage a plethora of resistance mechanisms have been encountered in pathogenic bacteria. One of these resistance mechanisms entails the enzymatic cleavage of the macrolides’ macrolactone ring by erythromycin esterases (Eres). The most frequently identified Ere enzyme is EreA, which confers resistance to the majority of clinically used macrolides. Despite the role Eres play in macrolide resistance, research into this family enzymes has been sparse. Here, we report the first three-dimensional structures of an erythromycin esterase, EreC. EreC is an extremely close homologue of EreA, displaying more than 90% sequence identity. Two structures of this enzyme, in conjunction with in silico flexible docking studies and previously reported mutagenesis data allowed for the proposal of a detailed catalytic mechanism for the Ere family of enzymes, labeling them as metal-independent hydrolases. Also presented are substrate spectrum assays for different members of the Ere family. The results from these assays together with an examination of residue conservation for the macrolide binding site in Eres, suggests two distinct active site archetypes within the Ere enzyme family.



Sign in / Sign up

Export Citation Format

Share Document