scholarly journals Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment

2012 ◽  
Vol 20 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Stefan Stanescu ◽  
Cristian Mocuta ◽  
Frederic Merlet ◽  
Antoine Barbier

The newly built MagSAXS (magnetic small-angle X-ray scattering) set-up dedicated to the direct two-dimensional measurement of magnetic scattering using polarized synchrotron radiation in extreme sample environments is presented. Pure optical transport of the image is used to record the magnetic scattering with a two-dimensional CCD visible-light camera. The set-up is able to probe magnetic correlation lengths from the micrometer down to the nanometer scale. A detailed layout is presented along with preliminary results obtained at several beamlines at Synchrotron SOLEIL. The presented examples underline the wide range of possible applications spanning from correlation lengths determination to Fourier transform holography.

2013 ◽  
Vol 21 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Hiroyuki Kishimoto ◽  
Yuya Shinohara ◽  
Yoshio Suzuki ◽  
Akihisa Takeuchi ◽  
Naoto Yagi ◽  
...  

A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1was thereby achieved at an X-ray energy of 8 keV.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


2019 ◽  
Vol 92 ◽  
pp. 01005
Author(s):  
Georgios Birmpilis ◽  
Reza Ahmadi-Naghadeh ◽  
Jelke Dijkstra

X-ray scattering is a promising non-invasive technique to study evolving nano- and micromechanics in clays. This study discusses the experimental considerations and a successful method to enable X-ray scattering to study clay samples at two extreme stages of consolidation. It is shown that the proposed sample environment comprising flat capillaries with a hydrophobic coating can be used for a wide range of voids ratios ranging from a clay suspension to consolidated clay samples, that are cut from larger specimens of reconstituted or natural clay. The initial X-ray scattering results using a laboratory instrument indicate that valuable information on, in principal evolving, clay fabric can be measured. Features such as characteristic distance between structural units and particle orientations are obtained for a slurry and a consolidated sample of kaolinite. Combined with other promising measurement techniques from Materials Science the proposed method will help advance the contemporary understanding on the behaviour of dense colloidal systems of clay, as it does not require detrimental sample preparation


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Christoph Eckart Schrank ◽  
Oliver Gaede ◽  
Tomasz Blach ◽  
Katherine Carmen Michelle Gioseffi ◽  
Stephen Mudie ◽  
...  

AbstractThe dehydration of gypsum to hemihydrate has been studied for decades because it is an important model reaction for understanding fluid-triggered earthquakes, and due to the global use of plaster of Paris in the construction industry. The dehydration kinetics of gypsum strongly depend on temperature and water vapour pressure. Here, we perform fast, time-resolved synchrotron X-ray scattering on natural alabaster samples, finding that a small elastic load accelerates the dehydration reaction significantly. The mechanical acceleration of the reaction consumes about 10,000 times less energy than that due to heating. We propose that this thermodynamically surprising finding is caused by geometry-energy interactions in the microstructure, which facilitate nucleation and growth of the new crystalline phase. Our results open research avenues on the fundamental thermo-mechanics of crystal hydrates and the interaction of stress and chemical reactions in crystalline solids with a wide range of implications, from understanding dehydration-triggered earthquakes to the energy-efficient design of calcination processes.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


1995 ◽  
Vol 28 (5) ◽  
pp. 630-632
Author(s):  
M. Lorenzen ◽  
C. Ferrero ◽  
O. Diat ◽  
C. Riekel ◽  
U. Mayerhofer

A set of macros based on CERN's program package PAW has been developed for interactive preprocessing of two-dimensional detector data at ESRF prior to more detailed data analysis. Various types of image operations (averaging, cuts, background correction etc.) are available. The main use of the package is at present in small- and wide-angle X-ray scattering (SAXS and WAXS). The flexibility of the package allows, however, easy adaptation to other areas such as fibre or powder diffraction.


2003 ◽  
Vol 36 (3) ◽  
pp. 809-811 ◽  
Author(s):  
Volker Urban ◽  
Pierre Panine ◽  
Cyril Ponchut ◽  
Peter Boesecke ◽  
Theyencheri Narayanan

1998 ◽  
Vol 248 (1-4) ◽  
pp. 310-315 ◽  
Author(s):  
C. Fradin ◽  
A. Braslau ◽  
D. Luzet ◽  
M. Alba ◽  
C. Gourier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document