scholarly journals Quantitative grain-scale ferroic domain volume fractions and domain switching strains from three-dimensional X-ray diffraction data

2015 ◽  
Vol 48 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Jette Oddershede ◽  
Marta Majkut ◽  
Qinghua Cao ◽  
Søren Schmidt ◽  
Jonathan P. Wright ◽  
...  

A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within a bulk sample. Such information is critical to furthering our understanding of the grain-scale interactions of ferroic domains and their influence on bulk properties. The method also provides a validation tool for mesoscopic ferroic domain modelling efforts. The mathematical formulations presented here are applied to tetragonal coarse-grained Ba0.88Ca0.12Zr0.06Ti0.94O3and rhombohedral fine-grained (0.82)Bi0.5Na0.5TiO3–(0.18)Bi0.5K0.5TiO3electroceramic materials. The fitted volume fraction information is used to calculate grain-scale non-180° ferroelectric domain switching strains. The absolute errors are found to be approximately 0.01 and 0.03% for the tetragonal and rhombohedral cases, which had maximum theoretical domain switching strains of 0.47 and 0.54%, respectively. Limitations and possible extensions of the technique are discussed.

2014 ◽  
Vol 777 ◽  
pp. 118-123 ◽  
Author(s):  
Yujiro Hayashi ◽  
Yoshiharu Hirose ◽  
Daigo Setoyama

In situ three-dimensional crystallographic orientation mapping in plastically-deformed polycrystalline iron is demonstrated using a modified three-dimensional x-ray diffraction method. This voxel-by-voxel measurement method enables the observation of intragranular orientation distribution. The experiment is performed using coarse-grained ferrite with a mean grain size of ~ 60 μm and an incident x-ray beam with a beam size of 20 μm × 20 μm. Grains averagely rotate approximately toward the <110> preferred orientation of body-centered cubic uniaxial tensile texture. Intragranular orientation distributions are spread as the tensile strain increases to 10.7 %. Furthermore, intragranular multidirectional rotations are observed in grains near the <100> and <111> corners in the inverse pole figure.


2004 ◽  
Vol 834 ◽  
Author(s):  
A. V. Baryshev ◽  
T. Kodama ◽  
K. Nishimura ◽  
H. Uchida ◽  
M. Inoue

ABSTRACTWe have fabricated three-dimensional magnetophotonic (3D MPCs) crystals based on artificial opals. Structural and magnetic properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. It was shown that increase of volume fraction of magnetite in the opal lattice leads to a dramatic decrease of transmitted light intensity in the visible region. We also found considerable changes in the Faraday rotation inside the (111) photonic bandgap of an opal—magnetite magnetophotonic crystal.


2017 ◽  
Vol 73 (9) ◽  
pp. 749-753 ◽  
Author(s):  
Qian-Kun Zhou ◽  
Ni-Ya Li

The CdII three-dimensional coordination poly[[[μ4-1,4-bis(1,2,4-triazol-1-yl)but-2-ene]bis(μ3-5-carboxybenzene-1,3-dicarboxylato)dicadmium(II)] dihydrate], {[Cd2(C9H4O6)2(C8H10N6)]·2H2O} n , (I), has been synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O, benzene-1,3,5-tricarboxylic acid (1,3,5-H3BTC) and 1,4-bis(1,2,4-triazol-1-yl)but-2-ene (1,4-btbe). The IR spectrum suggests the presence of protonated carboxylic acid, deprotonated carboxylate and triazolyl groups. The purity of the bulk sample was confirmed by elemental analysis and X-ray powder diffraction. Single-crystal X-ray diffraction analysis reveals that the CdII ions adopt a five-coordinated distorted trigonal–bipyramidal geometry, coordinated by three O atoms from three different 1,3,5-HBTC2− ligands and two N atoms from two different 1,4-btbe ligands; the latter are situated on centres of inversion. The CdII centres are bridged by 1,3,5-HBTC2− and 1,4-btbe ligands into an overall three-dimensional framework. When the CdII centres and the tetradentate 1,4-btbe ligands are regarded as nodes, the three-dimensional topology can be simplified as a binodal 4,6-connected network. Thermogravimetric analysis confirms the presence of lattice water in (I). Photoluminescence studies imply that the emission of (I) may be ascribed to intraligand fluorescence.


2011 ◽  
Vol 44 (2) ◽  
pp. 272-280 ◽  
Author(s):  
Luca Valentini ◽  
Maria Chiara Dalconi ◽  
Matteo Parisatto ◽  
Giuseppe Cruciani ◽  
Gilberto Artioli

Quantitative characterization of the microstructure of cement-based materials is of fundamental importance for assessing the performance and durability of the final products. However, accessing the three-dimensional microstructural information of hydrating cement pastes without introducing any perturbation is not trivial. Recently, a novel non-invasive method based on X-ray diffraction computed microtomography (XRD-CT) has been applied to cement-based materials, with the aim of describing the three-dimensional spatial distribution of selected phases during the hydration of the cement paste. This paper illustrates a method based on XRD-CT, combined with Rietveld-based quantitative phase analysis and image processing, which provides quantitative information relative to the distribution of the various phases present in the studied samples. In particular, it is shown how this method allows the estimation of the local volume fraction of the phase ettringite within a hydrating cement paste, and construction of a three-dimensional distribution map. Application of this method to the various constituents of a cementitious material, or, more generally, of a composite polycrystalline material, may provide a non-invasive tool for three-dimensional microstructural quantitative characterization.


Author(s):  
R. C. Hurley ◽  
S. A. Hall ◽  
J. P. Wright

This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure–property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.


2015 ◽  
Author(s):  
Andrew H. Van Benschoten ◽  
Lin Liu ◽  
Ana Gonzalez ◽  
Aaron S. Brewster ◽  
Nicholas K. Sauter ◽  
...  

AbstractX-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations must be measured. Until now measurement of diffuse scattering from protein crystals has been scarce, due to the extra effort of collecting diffuse data. Here, we present three-dimensional measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested Translation-Libration-Screw (TLS), Liquid-Like Motions (LLM), and coarse-grained Normal Modes (NM) models of protein motions. The LLM model provides a global picture of motions and were refined against the diffuse data, while the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that NM-based refinement can generate dynamics-inspired structural models that simultaneously agree with both Bragg and diffuse scattering.SignificanceThe structural details of protein motions are critical to understanding many biological processes, but they are often hidden to conventional biophysical techniques. Diffuse X-ray scattering can reveal details of the correlated movements between atoms; however, the data collection historically has required extra effort and dedicated experimental protocols. We have measured three-dimensional diffuse intensities in X-ray diffraction from CypA and trypsin crystals using standard crystallographic data collection techniques. Analysis of the resulting data is consistent with the protein motions resembling diffusion in a liquid or vibrations of a soft solid. Our results show that using diffuse scattering to model protein motions can become a component of routine crystallographic analysis through the extension of commonplace methods.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 710
Author(s):  
Natalia Narkevich ◽  
Yevgeny Deryugin ◽  
Yury Mironov

The deformation behavior, mechanical properties, and microstructure of Fe-Cr-Mn-0.53%N austenitic stainless steel were studied at a temperature range of 77 up to 293 K. The dynamics of the steel elongation were non-monotonic with a maximum at 240–273 K, when peaks of both static atom displacements from their equilibrium positions in austenite and residual stresses in the tensile load direction were observed. The results of X-ray diffraction analysis confirmed that the only stress-induced γ→ε-martensite transformation occurred upon deformation (no traces of the γ→α′ one was found). In this case, the volume fraction of ε-martensite was about 2–3%. These transformation-induced plasticity (TRIP) patterns were discussed in terms of changes in the phase composition of steel as the root cause.


2016 ◽  
Vol 30 (26) ◽  
pp. 1650328
Author(s):  
Yan Dong ◽  
Aimin Sun ◽  
Bin Xu ◽  
Hongtao Zhang ◽  
Meng Zhang

In this paper, the effect of tiny Y2O3 addition in (Bi,[Formula: see text]Pb)-2223 superconductor prepared by solid state reaction technique was studied. The properties of samples have been investigated via X-ray diffraction (XRD), resistance–temperature ([Formula: see text]–[Formula: see text]) curve, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). XRD data indicated that all samples are multiphase and the major phases are high-temperature phases and low-temperature phases. The volume fraction of (Bi,[Formula: see text]Pb)-2223 is not great change with tiny Y2O3 addition. All samples exhibit superconducting phase with the critical transition temperature and one-step transition, however, the transition width was decreased with the Y2O3 addition up to 0.04 wt.% and sharp increased with the excessive oxide addition. SEM pictures show that the Y2O3 appeared on the flake-type grains surface obviously, but the number and size of the hole between grains are decreased in the 0.04 wt.% addition.


Sign in / Sign up

Export Citation Format

Share Document