scholarly journals An X-ray gas monitor for free-electron lasers

2019 ◽  
Vol 26 (4) ◽  
pp. 1092-1100 ◽  
Author(s):  
Andrey A. Sorokin ◽  
Yilmaz Bican ◽  
Susanne Bonfigt ◽  
Maciej Brachmanski ◽  
Markus Braune ◽  
...  

A novel X-ray gas monitor (XGM) has been developed which allows the measurement of absolute photon pulse energy and photon beam position at all existing and upcoming free-electron lasers (FELs) over a broad spectral range covering vacuum ultraviolet (VUV), extreme ultraviolet (EUV) and soft and hard X-rays. The XGM covers a wide dynamic range from spontaneous undulator radiation to FEL radiation and provides a temporal resolution of better than 200 ns. The XGM consists of two X-ray gas-monitor detectors (XGMDs) and two huge-aperture open electron multipliers (HAMPs). The HAMP enhances the detection efficiency of the XGM for low-intensity radiation down to 105 photons per pulse and for FEL radiation in the hard X-ray spectral range, while the XGMD operates in higher-intensity regimes. The relative standard uncertainty for measurements of the absolute photon pulse energy is well below 10%, and down to 1% for measurements of relative pulse-to-pulse intensity on pulses with more than 1010 photons per pulse. The accuracy of beam-position monitoring in the vertical and horizontal directions is of the order of 10 µm.

2018 ◽  
Vol 25 (5) ◽  
pp. 1317-1322 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
QiKa Jia

It was demonstrated that harmonic order in free-electron laser (FEL) oscillations could be switched by adjusting the dispersive gap of the optical klystron ETLOK-III in the storage ring NIJI-IV. The effective gains for the fundamental and third-harmonic FEL oscillations were evaluated and it was confirmed that the FEL oscillated at the order of the harmonic with the higher effective gain. The ratio between the effective gain for the fundamental and that for the third harmonic was controlled by the dispersive gap. It was also demonstrated that a spectral measurement of the FEL-based Compton scattering X-ray beam was effective for directly observing the switching of the harmonic order. These results contribute to the development of higher-harmonic FEL oscillations suppressing the fundamental FEL oscillation in the extreme ultraviolet and X-ray regions.


2020 ◽  
Vol 10 (7) ◽  
pp. 2611
Author(s):  
Hirokatsu Yumoto ◽  
Yuichi Inubushi ◽  
Taito Osaka ◽  
Ichiro Inoue ◽  
Takahisa Koyama ◽  
...  

A nanofocusing optical system—referred to as 100 exa—for an X-ray free-electron laser (XFEL) was developed to generate an extremely high intensity of 100 EW/cm2 (1020 W/cm2) using total reflection mirrors. The system is based on Kirkpatrick-Baez geometry, with 250-mm-long elliptically figured mirrors optimized for the SPring-8 Angstrom Compact Free-Electron Laser (SACLA) XFEL facility. The nano-precision surface employed is coated with rhodium and offers a high reflectivity of 80%, with a photon energy of up to 12 keV, under total reflection conditions. Incident X-rays on the optics are reflected with a large spatial acceptance of over 900 μm. The focused beam is 210 nm × 120 nm (full width at half maximum) and was evaluated at a photon energy of 10 keV. The optics developed for 100 exa efficiently achieved an intensity of 1 × 1020 W/cm2 with a pulse duration of 7 fs and a pulse energy of 150 μJ (25% of the pulse energy generated at the light source). The experimental chamber, which can provide different stage arrangements and sample conditions, including vacuum environments and atmospheric-pressure helium, was set up with the focusing optics to meet the experimental requirements.


Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 47 ◽  
Author(s):  
Vittoria Petrillo ◽  
Michele Opromolla ◽  
Alberto Bacci ◽  
Illya Drebot ◽  
Giacomo Ghiringhelli ◽  
...  

Fine time-resolved analysis of matter—i.e., spectroscopy and photon scattering—in the linear response regime requires fs-scale pulsed, high repetition rate, fully coherent X-ray sources. A seeded Free Electron Laser (FEL) driven by a Linac based on Super Conducting cavities, generating 10 8 – 10 10 coherent photons at 2–5 keV with 0.2–1 MHz of repetition rate, can address this need. Three different seeding schemes, reaching the X-ray range, are described hereafter. The first two are multi-stage cascades upshifting the radiation frequency by a factor of 10–30 starting from a seed represented by a coherent flash of extreme ultraviolet light. This radiation can be provided either by the High Harmonic Generation of an optical laser or by an FEL Oscillator operating at 12–14 nm. The third scheme is a regenerative amplifier working with X-ray mirrors. The whole chain of the X-ray generation is here described by means of start-to-end simulations.


2019 ◽  
Vol 88 (1) ◽  
pp. 35-58 ◽  
Author(s):  
Henry N. Chapman

X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.


Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.


2019 ◽  
Vol 20 (6) ◽  
pp. 1401 ◽  
Author(s):  
Marius Schmidt

The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.


2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2014 ◽  
Vol 171 ◽  
pp. 487-503 ◽  
Author(s):  
Filippo Bencivenga ◽  
Flavio Capotondi ◽  
Francesco Casolari ◽  
Francesco Dallari ◽  
Miltcho B. Danailov ◽  
...  

We report on new opportunities for ultrafast science thanks to the use of two-colour extreme ultraviolet (XUV) pulses at the FERMI free electron laser (FEL) facility. The two pulses have been employed to carry out a pioneering FEL-pump/FEL-probe diffraction experiment using a Ti target and tuning the FEL pulses to the M2/3-edge in order to explore the dependence of the dielectric constant on the excitation fluence. The future impact that the use of such a two-colour FEL emission will have on the development of ultrafast wave-mixing methods in the XUV/soft X-ray range is addressed and discussed.


2019 ◽  
Vol 26 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Wenqiang Hua ◽  
Guangzhao Zhou ◽  
Zhe Hu ◽  
Shumin Yang ◽  
Keliang Liao ◽  
...  

X-ray free-electron lasers (XFELs) play an increasingly important role in addressing the new scientific challenges relating to their high brightness, high coherence and femtosecond time structure. As a result of pulse-by-pulse fluctuations, the pulses of an XFEL beam may demonstrate subtle differences in intensity, energy spectrum, coherence, wavefront, etc., and thus on-line monitoring and diagnosis of a single pulse are required for many XFEL experiments. Here a new method is presented, based on a grating splitter and bending-crystal analyser, for single-pulse on-line monitoring of the spatial characteristics including the intensity profile, coherence and wavefront, which was suggested and applied experimentally to the temporal diagnosis of an XFEL single pulse. This simulation testifies that the intensity distribution, coherence and wavefront of the first-order diffracted beam of a grating preserve the properties of the incident beam, by using the coherent mode decomposition of the Gaussian–Schell model and Fourier optics. Indicatively, the first-order diffraction of appropriate gratings can be used as an alternative for on-line monitoring of the spatial properties of a single pulse without any characteristic deformation of the principal diffracted beam. However, an interesting simulation result suggests that the surface roughness of gratings will degrade the spatial characteristics in the case of a partially coherent incident beam. So, there exists a suitable roughness value for non-destructive monitoring of the spatial properties of the downstream beam, which depends on the specific optical path. Here, experiments based on synchrotron radiation X-rays are carried out in order to verify this method in principle. The experimental results are consistent with the theoretical calculations.


2016 ◽  
Vol 23 (5) ◽  
pp. 1070-1075 ◽  
Author(s):  
Tim Plath ◽  
Philipp Amstutz ◽  
Jörn Bödewadt ◽  
Günter Brenner ◽  
Nagitha Ekanayake ◽  
...  

Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.


Sign in / Sign up

Export Citation Format

Share Document