Light source based on a 100 mm-long monolithic undulator magnet with a very short 4 mm-period length

2019 ◽  
Vol 26 (6) ◽  
pp. 1902-1910 ◽  
Author(s):  
Shigeru Yamamoto ◽  
Shigeru Kashiwagi ◽  
Shinichi Masuda ◽  
Nobuhiko Nakanii ◽  
Tomonao Hosokai ◽  
...  

A novel method to fabricate undulator magnets of a-few-millimetre-period length is being explored. Plate-type magnets, 100 mm-long with 4 mm-period length, have been successfully fabricated. They produce an undulator field of approximately 3 kG at a gap of 1.6 mm. Prototype undulators based on this technology have been constructed. Field measurements and characterization show that the quality of the undulator field of these plate magnets is sufficient for an undulator light source, and the calculated spectrum shows that the fundamental radiation emitted from this field is quite satisfactory. Test experiments for light generation using a real electron beam have been carried out at a test accelerator at the Research Center for Electron Photon Science (ELPH), Tohoku University, Japan, which is able to realize optics conditions to accept a very short gap of ∼1.6 mm. First observation and characterization of blue light was successfully accomplished.

2019 ◽  
Vol 210 ◽  
pp. 05013
Author(s):  
Hermann-Josef Mathes

The fluorescence detector technique is using the atmosphere as a calorimeter. Besides the precise monitoring of the parameters of the atmosphere a proper knowledge of the optical properties in the UV range of all optical components involved in the measurements of the fluorescence light is vital. Until now, the end-to-end calibration was performed with a 4.5 m2 large, uniformly lit light source attached to the aperture of the telescopes. To improve the maintainability we propose an alternative setup where a small and lightweight light source of known optical properties re-samples the measurement of the big light source piece by piece. This will be achieved by moving the light source based on an integrating sphere in two dimensions in front of the aperture. A prototype setup has been installed and we are currently optimizing the parameters of the system and the procedures. The aim is to reduce the effort for the procedure without diminishing the quality of the measurement. First measurements with this setup have already been performed and the measurements of the geometrical and optical properties of the light source are an ongoing activity. We present our calibration scheme and the first, preliminary results.


2003 ◽  
Vol 3 (3/4) ◽  
pp. 217-228 ◽  
Author(s):  
K. Eftaxias ◽  
P. Kapiris ◽  
J. Polygiannakis ◽  
A. Peratzakis ◽  
J. Kopanas ◽  
...  

Abstract. Electromagnetic anomalies (EMA) covering a wide range of frequencies from ULF, VLF up to VHF have been observed before recent destructive earthquakes in continental Greece. We show that the features of these signals are possibly correlated with the fault model characteristics of the associated earthquake and with the degree of geotectonic heterogeneity within the focal zone. The time evolution of these electromagnetic sequences reveals striking similarities to that observed in laboratory acoustic and electromagnetic emissions during different stages of failure preparation process in rocks. If we consider that the same dynamics governs the large-scale earthquakes and the microscopic scale sample rheological structure, the results of this analysis suggest that the recorded EMA might reflect the nucleation phase of the associated impending earthquake. We focus on the rise of the statistical view of earthquakes. We find electro-magnetic fingerprints of an underlying critical mechanism. Finally, we conclude that it is useful to combine ULF and VLF-VHF field measurements in an attempt to enhance the understanding of the physics behind these observations and thus to improve the quality of earthquake prediction. Further, the identification of an EMA as a seismogenic one supports the characterization of a sequence of shocks as foreshocks at the time they occur, further helping the earthquake prediction effort.


2019 ◽  
Author(s):  
Chem Int

Liquid effluents discharged by hospitals may contain chemical and biological contaminants whose main source is the different substances used for the treatment of patients. This type of rejection can present a sanitary potentially dangerous risk for human health and can provoke a strong degradation of diverse environmental compartments mainly water and soils. The present study focuses on the quality of the liquid effluents of Hassani Abdelkader’s hospital of Sidi Bel-Abbes (West of Algeria). The results reveal a significant chemical pollution (COD: 879 mgO2/L, BOD5: 850 mgO2/L, NH4+ : 47.9 mg/l, NO2- : 4.2 mg/l, NO3- : 56.8 mg/l with respect to WHO standard of 90 mgO2/L, 30 mgO2/L, 0.5 mg/l, 1 mg/l and 1 mg/l respectively). However, these effluents are biodegradable since the ratio COD/BOD5 do not exceeded the value of 2 in almost all samples. The presence of pathogen germs is put into evidence such as pseudomonas, the clostridium, the staphylococcus, the fecal coliforms and fecal streptococcus. These results show that the direct discharge of these effluents constitutes a major threat to human health and the environment.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3832
Author(s):  
Rubén Agregán ◽  
Noemí Echegaray ◽  
María López-Pedrouso ◽  
Radwan Kharabsheh ◽  
Daniel Franco ◽  
...  

Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 544
Author(s):  
Giuditta Guerrini ◽  
Antonio Vivi ◽  
Sabrina Gioria ◽  
Jessica Ponti ◽  
Davide Magrì ◽  
...  

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum–ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen–adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ha Min Son ◽  
Wooho Jeon ◽  
Jinhyun Kim ◽  
Chan Yeong Heo ◽  
Hye Jin Yoon ◽  
...  

AbstractAlthough computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical fields such as mammography and colonography, it is not used in dermatology, where noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into different common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufficient to use CAD in the field of dermatology.


Author(s):  
Peter Marvin Müller ◽  
Niklas Kühl ◽  
Martin Siebenborn ◽  
Klaus Deckelnick ◽  
Michael Hinze ◽  
...  

AbstractWe introduce a novel method for the implementation of shape optimization for non-parameterized shapes in fluid dynamics applications, where we propose to use the shape derivative to determine deformation fields with the help of the $$p-$$ p - Laplacian for $$p > 2$$ p > 2 . This approach is closely related to the computation of steepest descent directions of the shape functional in the $$W^{1,\infty }-$$ W 1 , ∞ - topology and refers to the recent publication Deckelnick et al. (A novel $$W^{1,\infty}$$ W 1 , ∞ approach to shape optimisation with Lipschitz domains, 2021), where this idea is proposed. Our approach is demonstrated for shape optimization related to drag-minimal free floating bodies. The method is validated against existing approaches with respect to convergence of the optimization algorithm, the obtained shape, and regarding the quality of the computational grid after large deformations. Our numerical results strongly indicate that shape optimization related to the $$W^{1,\infty }$$ W 1 , ∞ -topology—though numerically more demanding—seems to be superior over the classical approaches invoking Hilbert space methods, concerning the convergence, the obtained shapes and the mesh quality after large deformations, in particular when the optimal shape features sharp corners.


Sign in / Sign up

Export Citation Format

Share Document