scholarly journals Crystallographic insights into the structural aspects of thioctic acid based halogen-bond donor for the functionalization of gold nanoparticles

Author(s):  
Kavitha Buntara Sanjeeva ◽  
Ilaria Tirotta ◽  
Vijith Kumar ◽  
Francesca Baldelli Bombelli ◽  
Giancarlo Terraneo ◽  
...  

The synthesis and self-assembly capabilities of a new halogen-bond donor ligand, 2,3,5,6-tetrafluoro-4-iodophenyl 5-(1,2-dithiolan-3-yl)pentanoate (1), are reported. The crystal structure of ligand (1) and the formation of a cocrystal with 1,2-di(4-pyridyl)ethylene, (1)·(2), both show halogen bonds involving the 4-iodotetrafluorobenzene moiety. Ligand (1), being a self-complementary unit, forms an infinite halogen-bonded chain driven by the S...I synthon, while the cocrystal (1)·(2) self-assembles into a discrete trimeric entity driven by the N...I synthon. Ligand (1) was also successfully used to functionalize the surface of gold nanoparticles, AuNP-(1). Experiments on the dispersibility profile of AuNP-(1) demonstrated the potential of halogen bonding in facilitating the dispersion of modified NPs with halogen-bond donors in pyridine.

2020 ◽  
Author(s):  
Emer Foyle ◽  
Nicholas White

<div>In this work four new tripodal tris(halopyridinium) receptors containing potentially halogen</div><div>bonding groups were prepared. The ability of the receptors to bind anions in competitive</div><div>CD<sub>3</sub>CN/d<sub>6</sub>-DMSO was studied using <sup>1</sup>H NMR titration experiments, which revealed that the</div><div>receptors bind chloride anions more strongly than more basic acetate or other halide ions.</div><div>The solid state self–assembly of the tripodal receptors with halide anions was investigated by</div><div>X-ray crystallography. The nature of the structures was dependent on the choice of halide</div><div>anion, as well as the crystallisation solvent. Halogen bond lengths as short as 80% of the sum</div><div>of the van der Waals radii were observed, which is shorter than any halogen bonds involving</div><div>halopyridinium receptors in the Cambridge Structural Database.</div>


2020 ◽  
Author(s):  
Emer Foyle ◽  
Nicholas White

<div>In this work four new tripodal tris(halopyridinium) receptors containing potentially halogen</div><div>bonding groups were prepared. The ability of the receptors to bind anions in competitive</div><div>CD<sub>3</sub>CN/d<sub>6</sub>-DMSO was studied using <sup>1</sup>H NMR titration experiments, which revealed that the</div><div>receptors bind chloride anions more strongly than more basic acetate or other halide ions.</div><div>The solid state self–assembly of the tripodal receptors with halide anions was investigated by</div><div>X-ray crystallography. The nature of the structures was dependent on the choice of halide</div><div>anion, as well as the crystallisation solvent. Halogen bond lengths as short as 80% of the sum</div><div>of the van der Waals radii were observed, which is shorter than any halogen bonds involving</div><div>halopyridinium receptors in the Cambridge Structural Database.</div>


2011 ◽  
Vol 15 (11n12) ◽  
pp. 1250-1257 ◽  
Author(s):  
Hatem M. Titi ◽  
Anirban Karmakar ◽  
Israel Goldberg

Four new crystalline solids based on the zinc-5,15-bis(4′-bromophenyl)-10,20- bis(4′-pyridyl)porphyrin ( Zn –DBDPyP) and zinc/copper-5,10,15-tris(4′-bromophenyl)-20-(4′-pyridyl)-porphyrin ( Zn/Cu –TBMPyP) platforms as building blocks, have been prepared and structurally analyzed by X-ray diffraction in order to examine whether the Br⋯N halogen bond can be effective in directing the supramolecular assembly of this functionalized porphyrins, in a similar way observed earlier for their iodophenyl-substituted analogs. The zinc ion in the porphyrin core was protected by an external ligand (pyridyl or methanol) to prevent its possible coordination to the pyridyl-porphyrin substituents. Neither the bis-pyridyl Zn (py)–DBDPyP scaffold nor the Zn(MeOH)/Cu –TBMPyP exhibited inter-porphyrin halogen bonding in their corresponding crystals. Only the layered self-assembly of the Zn (py)–TBMPyP building block was found to be uniquely directed by Br⋯N halogen bonds, as well as by Br⋯Br and Br⋯π interactions. This observation supports our notion that asymmetric functionalization of the tetraarylporphyrin scaffold, combined with directional interporphyrin interactions (as halogen bonding), represent a promising approach to supramolecular chirality.


Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


2020 ◽  
Vol 21 (18) ◽  
pp. 6571
Author(s):  
Nicholas J. Thornton ◽  
Tanja van Mourik

Halogen bonding is studied in different structures consisting of halogenated guanine DNA bases, including the Hoogsteen guanine–guanine base pair, two different types of guanine ribbons (R-I and R-II) consisting of two or three monomers, and guanine quartets. In the halogenated base pairs (except the Cl-base pair, which has a very non-planar structure with no halogen bonds) and R-I ribbons (except the At trimer), the potential N-X•••O interaction is sacrificed to optimise the N-X•••N halogen bond. In the At trimer, the astatines originally bonded to N1 in the halogen bond donating guanines have moved to the adjacent O6 atom, enabling O-At•••N, N-At•••O, and N-At•••At halogen bonds. The brominated and chlorinated R-II trimers contain two N-X•••N and two N-X•••O halogen bonds, whereas in the iodinated and astatinated trimers, one of the N-X•••N halogen bonds is lost. The corresponding R-II dimers keep the same halogen bond patterns. The G-quartets display a rich diversity of symmetries and halogen bond patterns, including N-X•••N, N-X•••O, N-X•••X, O-X•••X, and O-X•••O halogen bonds (the latter two facilitated by the transfer of halogens from N1 to O6). In general, halogenation decreases the stability of the structures. However, the stability increases with the increasing atomic number of the halogen, and the At-doped R-I trimer and the three most stable At-doped quartets are more stable than their hydrogenated counterparts. Significant deviations from linearity are found for some of the halogen bonds (with halogen bond angles around 150°).


Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 140 ◽  
Author(s):  
Yu Zhang ◽  
Jian-Ge Wang ◽  
Weizhou Wang

How many strong C−I⋯N halogen bonds can one 1,3,5-trifluoro-2,4,6-triiodobenzene molecule form in a crystal structure? To answer this question, we investigated in detail the noncovalent interactions between 1,3,5-trifluoro-2,4,6-triiodobenzene and a series of 1,10-phenanthroline derivatives by employing a combined theoretical and experimental method. The results of the quantum chemical calculations and crystallographic experiments clearly show that there is a structural competition between a C−I⋯N halogen bond and π⋯π stacking interaction. For example, when there are much stronger π⋯π stacking interactions between two 1,10-phenanthroline derivative molecules or between two 1,3,5-trifluoro-2,4,6-triiodobenzene molecules in the crystal structures, then one 1,3,5-trifluoro-2,4,6-triiodobenzene molecule forms only one C−I⋯N halogen bond with one 1,10-phenanthroline derivative molecule. Another example is when π⋯π stacking interactions in the crystal structures are not much stronger, one 1,3,5-trifluoro-2,4,6-triiodobenzene molecule can form two C−I⋯N halogen bonds with two 1,10-phenanthroline derivative molecules.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Briauna Hawthorne ◽  
Haiyan Fan-Hagenstein ◽  
Elizabeth Wood ◽  
Jessica Smith ◽  
Timothy Hanks

Halogen bonding between pyridine and heptafluoro-2-iodopropane (iso-C3F7I)/heptafluoro-1-iodopropane (1-C3F7I) was studied using a combination of FTIR and 19F NMR. The ring breathing vibration of pyridine underwent a blue shift upon the formation of halogen bonds with both iso-C3F7I and 1-C3F7I. The magnitudes of the shifts and the equilibrium constants for the halogen-bonded complex formation were found to depend not only on the structure of the halocarbon, but also on the solvent. The halogen bond also affected the Cα-F (C-F bond on the center carbon) bending and stretching vibrations in iso-C3F7I. These spectroscopic effects show some solvent dependence, but more importantly, they suggest the possibility of intermolecular halogen bonding among iso-C3F7I molecules. The systems were also examined by 19F NMR in various solvents (cyclohexane, hexane, chloroform, acetone, and acetonitrile). NMR dilution experiments support the existence of the intermolecular self-halogen bonding in both iso-C3F7I and 1-C3F7I. The binding constants for the pyridine/perfluoroalkyl iodide halogen bonding complexes formed in various solvents were obtained through NMR titration experiments. Quantum chemical calculations were used to support the FTIR and 19F NMR observations.


Langmuir ◽  
2008 ◽  
Vol 24 (15) ◽  
pp. 7785-7792 ◽  
Author(s):  
Om P. Khatri ◽  
Kosaku Adachi ◽  
Kuniaki Murase ◽  
Ken-ichi Okazaki ◽  
Tsukasa Torimoto ◽  
...  

2020 ◽  
Vol 76 (6) ◽  
pp. 557-561
Author(s):  
Eric Bosch ◽  
Jessica D. Battle ◽  
Ryan H. Groeneman

The formation of a photoreactive cocrystal based upon 1,2-diiodoperchlorobenzene (1,2-C6I2Cl4 ) and trans-1,2-bis(pyridin-4-yl)ethylene (BPE) has been achieved. The resulting cocrystal, 2(1,2-C6I2Cl4 )·(BPE) or C6Cl4I2·0.5C12H10N2, comprises planar sheets of the components held together by the combination of I...N halogen bonds and halogen–halogen contacts. Notably, the 1,2-C6I2Cl4 molecules π-stack in a homogeneous and face-to-face orientation that results in an infinite column of the halogen-bond donor. As a consequence of this stacking arrangement and I...N halogen bonds, molecules of BPE also stack in this type of pattern. In particular, neighbouring ethylene groups in BPE are found to be parallel and within the accepted distance for a photoreaction. Upon exposure to ultraviolet light, the cocrystal undergoes a solid-state [2 + 2] cycloaddition reaction that produces rctt-tetrakis(pyridin-4-yl)cyclobutane (TPCB) with an overall yield of 89%. A solvent-free approach utilizing dry vortex grinding of the components also resulted in a photoreactive material with a similar yield.


2021 ◽  
Author(s):  
Dingguan Wang ◽  
Zishen Wang ◽  
Shaofei Wu ◽  
Arramel Arramel ◽  
Xinmao Yin ◽  
...  

Well-ordered spin arrays are highly desirable for next-generation molecule-based magnetic devices, and yet its synthetic method remains a challenging task. Herein, we demonstrate the realization of two-dimensional supramolecular spin arrays on surfaces via halogen-bonding molecular self-assembly. A bromine-terminal perchlorotriphenymethyl radical with net carbon spin was synthesized and deposited on Au(111) to achieve two-dimensional supramolecular spin arrays. By taking advantage of the diversity of halogen bonds, five supramolecular spin arrays are presented with ultrahigh spin densities (up to the value of 3 × 10<sup>13</sup> spins at the size of a flash drive), as probed by low-temperature scanning tunneling microscopy at the single-molecule level. First principle calculations verify that the formation of three distinct types of halogen bonds can be used to tailor supramolecular phases via molecular coverage and annealing temperature. Our work demonstrates supramolecular self-assembly as a promising method to engineering 2D spin arrays for potential application in magnetic devices.


Sign in / Sign up

Export Citation Format

Share Document