scholarly journals 1.65 Å resolution structure of the AraC-family transcriptional activator ToxT fromVibrio cholerae

Author(s):  
Jiaqin Li ◽  
Graham Wehmeyer ◽  
Scott Lovell ◽  
Kevin P. Battaile ◽  
Susan M. Egan

ToxT is an AraC-family transcriptional activator protein that controls the expression of key virulence factors inVibrio cholerae, the causative agent of cholera. ToxT directly activates the expression of the genes that encode the toxin-coregulated pilus and cholera toxin, and also positively auto-regulates its own expression from thetcppromoter. The crystal structure of ToxT has previously been solved at 1.9 Å resolution (PDB entry 3gbg). In this study, a crystal structure of ToxT at 1.65 Å resolution with a similar overall structure to the previously determined structure is reported. However, there are distinct differences between the two structures, particularly in the region that extends from Asp101 to Glu110. This region, which can influence ToxT activity but was disordered in the previous structure, can be traced entirely in the current structure.

2010 ◽  
Vol 192 (14) ◽  
pp. 3829-3832 ◽  
Author(s):  
Xiaowen R. Bina ◽  
James E. Bina

ABSTRACT Cyclo(Phe-Pro) is a cyclic dipeptide produced by multiple Vibrio species. In this work, we present evidence that cyclo(Phe-Pro) inhibits the production of the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) in O1 El Tor Vibrio cholerae strain N16961 during growth under virulence gene-inducing conditions. The cyclo(Phe-Pro) inhibition of CT and TCP production correlated with reduced transcription of the virulence regulator tcpPH and was alleviated by overexpression of tcpPH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eizo Takahashi ◽  
Sadayuki Ochi ◽  
Tamaki Mizuno ◽  
Daichi Morita ◽  
Masatomo Morita ◽  
...  

Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25°C and 37°C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25°C, but that was low when cultured at 37°C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future.


2000 ◽  
Vol 68 (5) ◽  
pp. 3010-3014 ◽  
Author(s):  
Yvette M. Murley ◽  
Jaideep Behari ◽  
Robert Griffin ◽  
Stephen B. Calderwood

ABSTRACT Two protein pairs in Vibrio cholerae, ToxRS and TcpPH, are necessary for transcription from the toxT promoter and subsequent expression of cholera virulence genes. We have previously shown that transcription of tcpPH in classical strains ofV. cholerae is activated at mid-log-phase growth in ToxR-inducing conditions, while transcription of tcpPH in El Tor strains is not. In this study, we showed that while transcription of tcpPH differs at mid-log-phase growth in ToxR-inducing conditions between the biotypes, transcription is equivalently high during growth in AKI conditions. We usedtcpPH::gusA transcriptional fusions to quantitate expression of tcpPH in each biotype throughout growth in ToxR-inducing conditions and showed that although transcription of tcpPH is reduced at mid-log-phase growth in an El Tor strain, transcription is turned on later in growth to levels in excess of those in the classical strain (although cholera toxin is not produced). This suggests that the difference in expression of cholera virulence factors in response to ToxR-inducing conditions between the El Tor and classical biotypes of V. choleraemay be related to the timing of transcription of tcpPHrather than the absolute levels of transcription.


2021 ◽  
Author(s):  
Annabelle Mathieu-Denoncourt ◽  
Sean Giacomucci ◽  
Marylise Duperthuy

Vibrio cholerae is a facultative human pathogen responsible for the cholera disease which infects millions of people worldwide each year. V. cholerae is a natural inhabitant of aquatic environments and the infection usually occurs after ingestion of contaminated water or food. The virulence factors of V. cholerae have been extensively studied in the last decades and include the cholera toxin and the coregulated pilus. Most of the virulence factors of V. cholerae belong to the secretome, which corresponds to all the molecules secreted in the extracellular environment such as proteins, exopolysaccharides, extracellular DNA or membrane vesicles. In this chapter, we review the current knowledge of the secretome of V. cholerae and its role in virulence, colonization and resistance. In the first section, we focus on the proteins secreted through conventional secretion systems. The second and third sections emphasize on the membrane vesicles and on the secretome associated with biofilms.


1999 ◽  
Vol 181 (21) ◽  
pp. 6779-6787 ◽  
Author(s):  
Brigid M. Davis ◽  
Harvey H. Kimsey ◽  
William Chang ◽  
Matthew K. Waldor

ABSTRACT CTXφ is a lysogenic, filamentous bacteriophage. Its genome includes the genes encoding cholera toxin (ctxAB), one of the principal virulence factors of Vibrio cholerae; consequently, nonpathogenic strains of V. cholerae can be converted into toxigenic strains by CTXφ infection. O139 Calcutta strains of V. cholerae, which were linked to cholera outbreaks in Calcutta, India, in 1996, are novel pathogenic strains that carry two distinct CTX prophages integrated in tandem: CTXET, the prophage previously characterized within El Tor strains, and a new CTX Calcutta prophage (CTXcalc). We found that the CTXcalc prophage gives rise to infectious virions; thus, CTXETφ is no longer the only known vector for transmission of ctxAB. The most functionally significant differences between the nucleotide sequences of CTXcalcφ and CTXETφ are located within the phages’ repressor genes (rstR calc andrstR ET, respectively) and their RstR operators. RstRcalc is a novel, allele-specific repressor that regulates replication of CTXcalcφ by inhibiting the activity of the rstA calc promoter. RstRcalc has no inhibitory effect upon the classical and El Tor rstA promoters, which are instead regulated by their cognate RstRs. Consequently, production of RstRcalc renders a CTXcalc lysogen immune to superinfection by CTXcalcφ but susceptible (heteroimmune) to infection by CTXETφ. Analysis of the prophage arrays generated by sequentially integrated CTX phages revealed that pathogenic V. cholerae O139 Calcutta probably arose via infection of an O139 CTXETφ lysogen by CTXcalcφ.


2006 ◽  
Vol 74 (5) ◽  
pp. 2937-2946 ◽  
Author(s):  
A. Ghosh ◽  
D. R. Saha ◽  
K. M. Hoque ◽  
M. Asakuna ◽  
S. Yamasaki ◽  
...  

ABSTRACT Cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain PL-21 is the etiologic agent of cholera-like syndrome. Hemagglutinin protease (HAP) is one of the major secretory proteins of PL-21. The mature 45-kDa and processed 35-kDa forms of HAP were purified in the presence and absence of EDTA from culture supernatants of PL-21. Enterotoxigenicities of both forms of HAP were tested in rabbit ileal loop (RIL), Ussing chamber, and tissue culture assays. The 35-kDa HAP showed hemorrhagic fluid response in a dose-dependent manner in the RIL assay. Histopathological examination of 20 μg of purified protease-treated rabbit ileum showed the presence of erythrocytes and neutrophils in the upper part of the villous lamina propria. Treatment with 40 μg of protease resulted in gross damage of the villous epithelium with inflammation, hemorrhage, and necrosis. The 35-kDa form of HAP, when added to the lumenal surface of rat ileum loaded in an Ussing chamber, showed a decrease in the intestinal short-circuit current and a cell rounding effect on HeLa cells. The mature 45-kDa form of HAP showed an increase in intestinal short-circuit current in an Ussing chamber and a cell distending effect on HeLa cells. These results show that HAP may play a role in the pathogenesis of PL-21.


1994 ◽  
Vol 3 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Ethan A. Merritt ◽  
Steve Sarfaty ◽  
Focco Van Den Akker ◽  
Cécile L'Hoir ◽  
Joseph A. Martial ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document