cyclic dipeptide
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7197
Author(s):  
Hong-Bing Liu ◽  
Jack R. Davison ◽  
Rahim Rajwani ◽  
Gengxiang Zhao ◽  
Shannon I. Ohlemacher ◽  
...  

Pyrazines (1,4-diazirines) are an important group of natural products that have tremendous monetary value in the food and fragrance industries and can exhibit a wide range of biological effects including antineoplastic, antidiabetic and antibiotic activities. As part of a project investigating the secondary metabolites present in understudied and chemically rich Actinomycetes, we isolated a series of six pyrazines from a soil-derived Lentzea sp. GA3-008, four of which are new. Here we describe the structures of lentzeacins A-E (1, 3, 5 and 6) along with two known analogues (2 and 4) and the porphyrin zincphyrin. The structures were determined by NMR spectroscopy and HR-ESI-MS. The suite of compounds present in Lentzea sp. includes 2,5-disubstituted pyrazines (compounds 2, 4, and 6) together with the new 2,6-disubstituted isomers (compounds 1, 3 and 5), a chemical class that is uncommon. We used long-read Nanopore sequencing to assemble a draft genome sequence of Lentzea sp. which revealed the presence of 40 biosynthetic gene clusters. Analysis of classical di-modular and single module non-ribosomal peptide synthase genes, and cyclic dipeptide synthases narrows down the possibilities for the biosynthesis of the pyrazines present in this strain.


2021 ◽  
pp. 162-173
Author(s):  
Deepak KGK ◽  
Seema Kumari ◽  
Rama Rao Malla

Background: Oxidative stress plays a key role in breast carcinogenesis. Cyclo (L-Leu-L-Pro) (CLP) is a homodetic cyclic dipeptide with 2,5-diketopiperazine scaffold isolated from marine actinobacteria. This study aimed to evaluate the protective activity of CLP and linear - (L-Leu-L-Pro) (LP) from tert-butyl hydroperoxide (tBHP)-induced damage using normal breast epithelial cell line model (MCF-12A). Methods: The cytoprotective activity was evaluated by detecting the changes in intracellular ROS, mitochondrial superoxide, hydroxyl radical, hydrogen peroxide, and lipid peroxidation detection assays as well as cytotoxic assays of MTT, LDH assays and phase contrast microscopy. Genoprotective activity was evaluated by (Apurinic/Apyrimidinic) AP site, alkaline Comet, and 8-hydroxy-2-deoxyguanosine assays. Results: The marine cyclic peptide, CLP, significantly protected MCF-12A cells by scavenging tBHP induced intracellular ROS such as super oxide, hydroxyl radicals and hydrogen peroxide, and by reducing the cytotoxicity and genotoxicity effect compared to LP. Moreover, the results showed that CD151 gene silencing by shRNA significantly reduced the overexpression of CD151, tBHP-induced ROS generation, cytotoxicity and genotoxicity in MCF-12A cells. The overexpression of CD151 caused increased levels of cytochrome P450, but was reduced following the application of CD151shRNA and CLP which led to elevated levels of intracellular ROS. Conclusion: In the present study we noticed that CD151 gene silencing by shRNA and treatment with CLP have similar effects on reducing the intracellular ROS. This study uncovers the protective activity of CLP against a CD151-mediated oxidative stress-induced cellular damage. Our observations suggest that the anti-stress and anti-inflammation properties of CLP might have implications in cancer and are worth testing in cancer cell lines and tumor cells.


ACS Omega ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 7693-7700 ◽  
Author(s):  
Xiaodan Yu ◽  
Li Li ◽  
Shiwei Sun ◽  
Aiping Chang ◽  
Xiaoyun Dai ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5611
Author(s):  
Siqi Yuan ◽  
Xihao Yong ◽  
Ting Zhao ◽  
Yuan Li ◽  
Jun Liu

Pulcherriminic acid is a cyclic dipeptide found mainly in Bacillus and yeast. Due to the ability of pulcherriminic acid to chelate Fe3+ to produce reddish brown pulcherrimin, microorganisms capable of synthesizing pulcherriminic acid compete with other microorganisms for environmental iron ions to achieve bacteriostatic effects. Therefore, studying the biosynthetic pathway and their enzymatic catalysis, gene regulation in the process of synthesis of pulcherriminic acid in Bacillus can facilitate the industrial production, and promote the wide application in food, agriculture and medicine industries. After initially discussing, this review summarizes current research on the synthesis of pulcherriminic acid by Bacillus, which includes the crystallization of key enzymes, molecular catalytic mechanisms, regulation of synthetic pathways, and methods to improve efficiency in synthesizing pulcherriminic acid and its precursors. Finally, possible applications of pulcherriminic acid in the fermented food, such as Chinese Baijiu, applying combinatorial biosynthesis will be summarized.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1247
Author(s):  
Eric D. Gardner ◽  
Dustin A. Dimas ◽  
Matthew C. Finneran ◽  
Sara M. Brown ◽  
Anthony W. Burgett ◽  
...  

Tryprostatin A and B are prenylated, tryptophan-containing, diketopiperazine natural products, displaying cytotoxic activity through different mechanisms of action. The presence of the 6-methoxy substituent on the indole moiety of tryprostatin A was shown to be essential for the dual inhibition of topoisomerase II and tubulin polymerization. However, the inability to perform late-stage modification of the indole ring has limited the structure–activity relationship studies of this class of natural products. Herein, we describe an efficient chemoenzymatic approach for the late-stage modification of tryprostatin B using a cyclic dipeptide N-prenyltransferase (CdpNPT) from Aspergillus fumigatus, which generates novel analogs functionalized with allylic, benzylic, heterocyclic, and diene moieties. Notably, this biocatalytic functionalizational study revealed high selectivity for the indole C6 position. Seven of the 11 structurally characterized analogs were exclusively C6-alkylated, and the remaining four contained predominant C6-regioisomers. Of the 24 accepted substrates, 10 provided >50% conversion and eight provided 20–50% conversion, with the remaining six giving <20% conversion under standard conditions. This study demonstrates that prenyltransferase-based late-stage diversification enables direct access to previously inaccessible natural product analogs.


2020 ◽  
Vol 27 (8) ◽  
pp. 688-697
Author(s):  
Yu Chen ◽  
Kai Tao ◽  
Wei Ji ◽  
Pandeeswar Makam ◽  
Sigal Rencus-Lazar ◽  
...  

Supramolecular self-assembled functional materials comprised of cyclic dipeptide building blocks have excellent prospects for biotechnology applications due to their exceptional structural rigidity, morphological flexibility, ease of preparation and modification. Although the pharmacological uses of many natural cyclic dipeptides have been studied in detail, relatively little is reported on the engineering of these supramolecular architectures for the fabrication of functional materials. In this review, we discuss the progress in the design, synthesis, and characterization of cyclic dipeptide supramolecular nanomaterials over the past few decades, highlighting applications in biotechnology and optoelectronics engineering.


Sign in / Sign up

Export Citation Format

Share Document