scholarly journals Structure of an H3N2 influenza virus nucleoprotein

Author(s):  
Michael L. Knight ◽  
Haitian Fan ◽  
David L. V. Bauer ◽  
Jonathan M. Grimes ◽  
Ervin Fodor ◽  
...  

Influenza A viruses of the H1N1 and H3N2 subtypes are responsible for seasonal epidemic events. The influenza nucleoprotein (NP) binds to the viral genomic RNA and is essential for its replication. Efforts are under way to produce therapeutics and vaccines targeting the NP. Despite this, no structure of an NP from an H3N2 virus has previously been determined. Here, the structure of the A/Northern Territory/60/1968 (H3N2) influenza virus NP is presented at 2.2 Å resolution. The structure is highly similar to those of the A/WSN/1933 (H1N1) and A/Hong Kong/483/97 (H5N1) NPs. Nonconserved amino acids are widely dispersed both at the sequence and structural levels. A movement of the 73–90 RNA-binding loop is observed to be the key difference between the structure determined here and previous structures. The data presented here increase the understanding of structural conservation amongst influenza NPs and may aid in the design of universal interventions against influenza.

2021 ◽  
Vol 10 (36) ◽  
pp. 167-169
Author(s):  
Camila Siqueira ◽  
Diogo Kuczera ◽  
Eneida Da Lozzo ◽  
Dorly Buchi ◽  
José Nelson Couceiro ◽  
...  

Introduction: Strains of macrophages, such as murine J774.G8 macrophages, are susceptible to influenza A infection [1]. One of the responses to viral infection involves the production of various types of immunostimulatory cytokines by infected cells [2]. Methods: In the present study, the macrophage strain J774.G8, maintained in RPMI medium, was submitted to treatment with 10% V/V of two different biotherapics prepared from influenza H3N2, both at 30x. Additionally, two control groups were analyzed: macrophages stimulated with water 30x and macrophages without any treatment. Biotherapics were prepared from intact H3N2 influenza virus and H3N2 inactivated by alcohol 70%. The compounding of both biotherapics followed this procedure: one part of viral particles was diluted in 9 parts of sterile distilled water. The 1:10 sample was submitted to 100 mechanical succussions using Autic® Brazilian machine, originating the first dilution, named decimal (1x). 1 ml of this solution was diluted in 9 ml of solvent and was submitted to 100 succussions, generating biotherapic 2x. This procedure was successively repeated, according to Brazilian Homeopathic Pharmacopoeia, to obtain the biotherapic 30x. By the same technique, water vehicle was prepared in the potency of 30x to be used as control. All samples were prepared under sterile and aseptic conditions, using laminar flow cabinet, class II, and were stored in the refrigerator (8ºC), to avoid microbiological contamination. J774.G8 macrophages were stimulated for 2 days, in a total of six stimuli. Immediately before infection with 25 µl of H3N2 influenza virus, the supernatants were collected and frozen at -20 ºC for later analysis. Next, 24 hours after the virus infection, the supernatants were aliquoted and frozen under the same conditions. Three independent experiments were done in triplicate. Analysis of supernatants was performed by flow cytometry using the Mouse Inflammation Kit. The cytokines detected in this experiment were IL-10, IL 12, TNF-α and MCP1. Results: In all cases, there were no significant differences compared to control groups. However, the production of TNF-α detected in macrophages treated by intact and inactivated biotherapics presented a tendency to increase after infection. In fact, similar results were previously detected in other experiments conducted only with the intact biotherapic [3]. The release of the cytokine MCP1 in all experimental situations presented a tendency to decrease after the viral infection when compared to untreated macrophages. No statistically significant difference was detected in the production of IL 12 and IL 10. These experiments will be repeated to confirm the data obtained.


2005 ◽  
Vol 79 (7) ◽  
pp. 4329-4339 ◽  
Author(s):  
Samita S. Andreansky ◽  
John Stambas ◽  
Paul G. Thomas ◽  
Weidong Xie ◽  
Richard J. Webby ◽  
...  

ABSTRACT The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the −NP−PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the −NP−PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the −NP−PA deletion viruses. These findings have implications for both natural infections and vaccines.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Mélia Magnen ◽  
Fabien Gueugnon ◽  
Antoine Guillon ◽  
Thomas Baranek ◽  
Virginie C. Thibault ◽  
...  

ABSTRACT Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans. IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV in vitro and in vivo. Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.


2002 ◽  
Vol 46 (4) ◽  
pp. 1014-1021 ◽  
Author(s):  
Warren M. Kati ◽  
Debra Montgomery ◽  
Robert Carrick ◽  
Larisa Gubareva ◽  
Clarence Maring ◽  
...  

ABSTRACT A-315675 is a novel, pyrrolidine-based compound that was evaluated in this study for its ability to inhibit A and B strain influenza virus neuraminidases in enzyme assays and influenza virus replication in cell culture. A-315675 effectively inhibited influenza A N1, N2, and N9 and B strain neuraminidases with inhibitor constant (Ki ) values between 0.024 and 0.31 nM. These values were comparable to or lower than the Ki values measured for oseltamivir carboxylate (GS4071), zanamivir, and BCX-1812, except for the N1 enzymes that were found to be the most sensitive to BCX-1812. The time-dependent inhibition of neuraminidase catalytic activity observed with A-315675 is likely due to its very low rate of dissociation from the active site of neuraminidase. The half times for dissociation of A-315675 from B/Memphis/3/89 and A/Tokyo/3/67 (H3N2) influenza virus neuraminidases of 10 to 12 h are significantly slower than the half times measured for oseltamivir carboxylate (33 to 60 min). A-315675 inhibited the replication of several laboratory strains of influenza virus in cell culture with potencies that were comparable or superior to those for oseltamivir carboxylate and BCX-1812, except for the A/H1N1 viruses that were found to be two- to fourfold more susceptible to BCX-1812. A-315675 and oseltamivir carboxylate exhibited comparable potencies against a panel of A/H1N1 and A/H3N2 influenza virus clinical isolates, but A-315675 was found to be significantly more potent than oseltamivir carboxylate against the B strain isolates. The favorable in vitro results relative to other clinically effective agents provide strong support for the further investigation of A-315675 as a potential therapy for influenza virus infections.


2015 ◽  
Vol 143 (14) ◽  
pp. 2959-2964 ◽  
Author(s):  
L. N. M. HOA ◽  
J. E. BRYANT ◽  
M. CHOISY ◽  
L. A. NGUYET ◽  
N. T. BAO ◽  
...  

SUMMARYA reassortant swine-origin A(H3N2) virus (A/swine/BinhDuong/03-9/2010) was detected through swine surveillance programmes in southern Vietnam in 2010. This virus contains haemagglutinin and neuraminidase genes from a human A(H3N2) virus circulating around 2004–2006, and the internal genes from triple-reassortant swine influenza A viruses (IAVs). To assess population susceptibility to this virus we measured haemagglutination inhibiting (HI) titres to A/swine/BinhDuong/03-9/2010 and to seasonal A/Perth/16/2009 for 947 sera collected from urban and rural Vietnamese people during 2011–2012. Seroprevalence (HI ⩾ 40) was high and similar for both viruses, with 62·6% [95% confidence interval (CI) 59·4–65·7] against A/Perth/16/2009 and 54·6% (95% CI 51·4–57·8%) against A/swine/BinhDuong/03-9/2010, and no significant differences between urban and rural participants. Children aged <5 years lacked antibodies to the swine origin H3 virus despite high seroprevalence for A/Perth/16/2009. These results reveal vulnerability to infection to this contemporary swine IAV in children aged <5 years; however, cross-reactive immunity in adults would likely limit epidemic emergence potential.


1999 ◽  
Vol 73 (9) ◽  
pp. 7349-7356 ◽  
Author(s):  
Liz Medcalf ◽  
Emma Poole ◽  
Debra Elton ◽  
Paul Digard

ABSTRACT The negative-sense segmented RNA genome of influenza virus is transcribed into capped and polyadenylated mRNAs, as well as full-length replicative intermediates (cRNAs). The mechanism that regulates the two forms of transcription remains unclear, although several lines of evidence imply a role for the viral nucleoprotein (NP). In particular, temperature-shift and biochemical analyses of the temperature-sensitive viruses A/WSN/33ts56 and A/FPV/Rostock/34/Giessen tsG81 containing point mutations within the NP coding region have indicated specific defects in replicative transcription at the nonpermissive temperature. To identify the functional defect, we introduced the relevant mutations into the NP of influenza virus strain A/PR/8/34. Both mutants were temperature sensitive for influenza virus gene expression in transient-transfection experiments but localized and accumulated normally in transfected cells. Similarly, the mutants retained the ability to self-associate and interact with the virus polymerase complex whether synthesized at the permissive or the nonpermissive temperatures. In contrast, the mutant NPs were defective for RNA binding when expressed at the nonpermissive temperature but not when expressed at 30°C. This suggests that the RNA-binding activity of NP is required for replicative transcription.


1981 ◽  
Vol 86 (3) ◽  
pp. 303-313 ◽  
Author(s):  
L. H. Taber ◽  
A. Paredes ◽  
W. P. Glezen ◽  
R. B. Couch

SUMMARYIn 1976, an epidemic caused by infections with an influenza virus antigenically similar to A/Victoria/75 (H3N2) occurred in Houston, Texas. During this outbreak, 37 families (155 members) enrolled in the Houston Family Study were under observation. The families lived throughout the metropolitan area (Houston, Texas), and were representative of low income groups. The overall frequency of infection in family members was 27·7%. The frequency of infection was the highest for infants under one year of age and for their older siblings, 14 (37·8%) of 37 and 17 (33·3%) of 51, respectively. Eighteen (48·6%) of the 37 families had at least one infected member. Twelve of the 18 ‘infected’ families had school aged children, whereas only three of the 19 ‘non-infected’ families had school aged children (P < 0·01). These infected families were also larger and had increased household density (persons/rooms). The levels of pre-existing HI antibodies to A/Victoria/75 and A/Port Chalmers/73 were inversely related to frequencies of infection and illness associated with A/Victoria/75 virus. Three children required hospitalization as direct consequence of their infection with this H3N2 influenza virus. Antibody response to infection was related to previous experience with antigenically-related influenza A (H3N2) viruses according to Francis', ‘doctrine of original antigenic sin.’


2016 ◽  
Vol 90 (9) ◽  
pp. 4298-4307 ◽  
Author(s):  
Nora Kühn ◽  
Silke Bergmann ◽  
Nadine Kösterke ◽  
Ruth L. O. Lambertz ◽  
Anna Keppner ◽  
...  

ABSTRACTCleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivityin vitro. Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection ofTmprss2knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion ofTmprss4alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2−/−Tmprss4−/−double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virusin vivo.IMPORTANCEInfluenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously thatTmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2andTmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza virusesin vivo.


Sign in / Sign up

Export Citation Format

Share Document