Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns

2014 ◽  
Vol 70 (5) ◽  
pp. 448-456 ◽  
Author(s):  
P. Boullay ◽  
L. Lutterotti ◽  
D. Chateigner ◽  
L. Sicard

The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2and Mn3O4nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search–match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient.

Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


1985 ◽  
Vol 48 ◽  
Author(s):  
Howard T. Sawhill ◽  
Linn W. Hobbs

ABSTRACTNi/NiO interface structures were investigated using TEM, and the observed structures were compared with current heterophase interface models. Relative magnitudes of Ni/NiO interfacial energies were obtained from measurements of dihedral angles at triple grain junctions between Ni and NiO grains. Extra reflections in diffraction patterns from oxide grains adjacent to the Ni/NiO interface were compared with kinematical structure factor calculations for several proposed structures.


2016 ◽  
Vol 22 (1) ◽  
pp. 122-130 ◽  
Author(s):  
Yucheng Zhou ◽  
Yimin Gao ◽  
Shizhong Wei ◽  
Yajie Hu

AbstractA novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43–85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\left[ {2\bar{2}1} \right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed.


1985 ◽  
Vol 49 (352) ◽  
pp. 375-386 ◽  
Author(s):  
C. D. Curtis ◽  
C. R. Hughes ◽  
J. A. Whiteman ◽  
C. K. Whittle

AbstractA range of authigenic sedimentary chlorites from sandstones has been studied by analytical transmission electron microscopy. Selected area (single crystal) electron diffraction patterns are of the Ib (β = 90°) polytype confirming the earlier observations of Hayes (1970).TEM analyses show all samples to be relatively rich in both Al and Fe. In the general formula (Mg,Fe,Al)n [Si8−xAlxO20](OH)16, x varies between 1.5 and 2.6; Fe/(Fe + Mg) between 0.47 and 0.83 and n between 10.80 and 11.54. Octahedral Al is close to 3 in this formulation and Fe2+ predominates over Fe3+. Swelling chlorites have significantly different compositions which are consistent with smectite/chlorite interstratifications.The Ib (β = 90°) polytype appears to be stable under conditions of moderate to deep burial. It replaces berthierine and swelling chlorites formed at lower temperatures. As commonly seen in grain coatings, however, it precipitates from porewater; solutes probably being contributed from several mineral decomposition reactions.


1996 ◽  
Vol 442 ◽  
Author(s):  
Dov Cohen ◽  
C. Barry Carter

AbstractAntiphase boundaries in GaP crystals epitactically grown on Si (001) have been characterized using transmission electron microscopy. Convergent-beam electron diffraction was used to identify the antiphase-related grains. The antiphase boundaries were observed to adopt facets parallel to specific crystallographic orientations. Furthermore, stacking-fault-like contrast was observed along the interface suggesting that the domains may be offset from one another by a rigid-body lattice translation.


2009 ◽  
Vol 42 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Cyril Cayron ◽  
Martien Den Hertog ◽  
Laurence Latu-Romain ◽  
Céline Mouchet ◽  
Christopher Secouard ◽  
...  

Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grownviathe vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure withc/a= 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data,i.e.EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.


Author(s):  
H. C. Liu ◽  
E. Chang ◽  
T. E. Mitchell

The β-NiAl phase, which is an ordered B2 structure, covers a wide range of compositions extending from ∼46 at.% Ni to ∼60 at.% Ni. For non-stoichiometric β-NiAl, studies (1,2) have shown that, for compositions below 50 at.% Ni, structural vacancies are introduced on the Ni sublattice (denoted as VNi), but for compositions above 50 at.% Ni,excess Ni atoms replace A1 atoms on the A1 sublattice (denoted as NiAl). In this work, defect structures in compositions of 45, 45.5, 46, 47, 50, 55, 58 and 60 at.% Ni were studied by electron diffraction techniques in a Siemens 102 TEM.Figs. 1 and 2 show selected area diffraction patterns at the exact [011] and [001] zone axes respectively.


Sign in / Sign up

Export Citation Format

Share Document