scholarly journals Crystal structure of isocitrate lyase from Magnaporthe grisea

2014 ◽  
Vol 70 (a1) ◽  
pp. C1667-C1667
Author(s):  
Yangshin Park ◽  
Sangkee Rhee

Glyoxylate cycle is a branched metabolic pathway in the TCA cycle that was initially discovered in microorganisms. The branched cycle plays an essential role in those organisms by providing the means for microorganisms to utilize acetate, ethanol, or fatty acids as carbon sources. In fact, pathogenic microorganisms rely on the glyoxylate cycle, rather than the TCA cycle, during infection. Therefore, the enzymes in the glyoxylate cycle of pathogens were suggested to be one of drug target molecules. Magnaporthe grisea isocitrate lyase (MgICL), a key enzyme in the cycle, is highly expressed during appressorium-mediated plant infection. In order to characterize the structural and functional features of MgICL, a structure of MgICL was determined at 2.7 Å resolution by X-ray crystallography. Recently, we are carrying out structure determination of MgICL in complex with a possible candidate for inhibitors. Our study could provide detailed structural features of MgICL and the binding mode of an inhibitor. This work was supported by a grant from Center for Fungal Pathogenesis by National Research Foundation, Republic of Korea.

Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3166-3175 ◽  
Author(s):  
M. F. Dunn ◽  
J. A. Ramírez-Trujillo ◽  
I. Hernández-Lucas

The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C2 compounds by bypassing the CO2-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.


2010 ◽  
Vol 9 (4) ◽  
pp. 656-666 ◽  
Author(s):  
Sandra L. Murray ◽  
Michael J. Hynes

ABSTRACT Citrate synthase is a central activity in carbon metabolism. It is required for the tricarboxylic acid (TCA) cycle, respiration, and the glyoxylate cycle. In Saccharomyces cerevisiae and Arabidopsis thaliana, there are mitochondrial and peroxisomal isoforms encoded by separate genes, while in Aspergillus nidulans, a single gene, citA, encodes a protein with predicted mitochondrial and peroxisomal targeting sequences (PTS). Deletion of citA results in poor growth on glucose but not on derepressing carbon sources, including those requiring the glyoxylate cycle. Growth on glucose is restored by a mutation in the creA carbon catabolite repressor gene. Methylcitrate synthase, required for propionyl-coenzyme A (CoA) metabolism, has previously been shown to have citrate synthase activity. We have been unable to construct the mcsAΔ citAΔ double mutant, and the expression of mcsA is subject to CreA-mediated carbon repression. Therefore, McsA can substitute for the loss of CitA activity. Deletion of citA does not affect conidiation or sexual development but results in delayed conidial germination as well as a complete loss of ascospores in fruiting bodies, which can be attributed to loss of meiosis. These defects are suppressed by the creA204 mutation, indicating that McsA activity can substitute for the loss of CitA. A mutation of the putative PTS1-encoding sequence in citA had no effect on carbon source utilization or development but did result in slower colony extension arising from single conidia or ascospores. CitA-green fluorescent protein (GFP) studies showed mitochondrial localization in conidia, ascospores, and hyphae. Peroxisomal localization was not detected. However, a very low and variable detection of punctate GFP fluorescence was sometimes observed in conidia germinated for 5 h when the mitochondrial targeting sequence was deleted.


2021 ◽  
Vol 7 (7) ◽  
pp. 502
Author(s):  
Susana Hidalgo Vico ◽  
Daniel Prieto ◽  
Rebeca Alonso Monge ◽  
Elvira Román ◽  
Jesús Pla

Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition WOR1 has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor (WOR1OE) suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration. The WOR1OE cells are deficient in using trehalose and xylose and are unable to use 2C sources, which is consistent with a reduction in the amount of Icl1, the isocitrate lyase enzyme. The icl1Δ/Δ mutants overexpressing WOR1 are deficient in the production of phloxine B positive cells, a main characteristic of opaque cells, a phenotype also observed in mating type hemizygous mtla1Δ icl1Δ/Δ cells, suggesting the involvement of Icl1 in the adaptation to the commensal state. In fact, icl1Δ/Δ cells have reduced fitness in mouse gastrointestinal tract as compared with essentially isogenic heterozygous ICL1/icl1Δ, but overproduction of WOR1 in an icl1Δ/Δ mutant does not restore fitness. These results implicate the glyoxylate shunt in the adaptation to commensalism of C. albicans by mechanisms that are partially independent of WOR1.


1969 ◽  
Vol 15 (10) ◽  
pp. 1207-1212 ◽  
Author(s):  
J. C. Galbraith ◽  
J. E. Smith

The activities of certain enzymes of the tricarboxylic acid (TCA) cycle and the glyoxylate cycle (GLC) varied during growth of Aspergillus niger as a function of the stage of the life cycle and of the growth medium. Isocitrate dehydrogenase (carboxylating) and isocitrate lyase each showed a marked increase in activity prior to sporulation. There were no similar increases in vegetative cultures. It is proposed that isocitrate lyase is functional in glycine synthesis and that a source of glyoxylate may be indispensable to the expression of sporulation.


2001 ◽  
Vol 29 (2) ◽  
pp. 283-286 ◽  
Author(s):  
E. L. Rylott ◽  
M. A. Hooks ◽  
I. A. Graham

Molecular genetic approaches in the model plant Arabidopsis thaliana (ColO) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: β-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolasemediated steps of β-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of β-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.


1978 ◽  
Vol 24 (2) ◽  
pp. 149-153 ◽  
Author(s):  
T. M. Lakshmi ◽  
Robert B. Helling

Levels of several intermediary metabolites were measured in cells grown in acetate medium in order to test the hypothesis that the glyoxylate cycle is repressed by phosphoenolpyruvate (PEP). Wild-type cells had less PEP than either isocitrate dehydrogenase – deficient cells (which had greater isocitrate lyase activity than the wild type) or isocitrate dehydrogenase – deficient, citrate synthase – deficient cells (which are poorly inducible). Thus induction of the glyoxylate cycle is more complicated than a simple function of PEP concentration. No correlation between enzyme activity and the level of oxaloacetate, pyruvate, or citrate was found either. Citrate was synthesized in citrate synthase – deficient mutants, possibly via citrate lyase.


Marine Drugs ◽  
2014 ◽  
Vol 12 (10) ◽  
pp. 5148-5159 ◽  
Author(s):  
So-Hyoung Lee ◽  
Tae Won ◽  
Heegyu Kim ◽  
Chan-Hong Ahn ◽  
Jongheon Shin ◽  
...  

2003 ◽  
Vol 47 (6) ◽  
pp. 1601-1612 ◽  
Author(s):  
Zheng-Yi Wang ◽  
Christopher R. Thornton ◽  
Michael J. Kershaw ◽  
Li Debao ◽  
Nicholas J. Talbot

1967 ◽  
Vol 47 (3) ◽  
pp. 199-209 ◽  
Author(s):  
C. R. Krishnamurti ◽  
L. W. McElroy

When cells of E. coli 64 were harvested in their exponential phase of growth in an acetate medium and incubated aerobically with sodium acetate-2-C14, about 33% of the label appeared in CO2 after 1 hr. Of the radioactivity in the cells, 72% was recovered in the protein hydrolysate, 8% in the nucleic acid, 6% in the lipid and 14% in the ethanol-soluble fractions. The radioactivity in the protein hydrolysate of cells incubated with sodium acetate-2-C14 was approximately 20 times that in the hydrolysate of cells incubated with C14O2 as the carbon source. By spectrophotometric methods, it was demonstrated that cell-free extracts of cells grown on acetate contained acetate kinase and phosphate acetyltransferase, plus, as demonstrated by spectrophotometric and isotopic methods, isocitrate lyase and malate synthase which are characteristic of the glyoxylate cycle. The enzymes of the glyoxylate cycle could not be demonstrated in cell-free extracts of E. coli 64 grown on glucose under either aerobic or anaerobic conditions. Possible functions that E. coli 64 may have in the maintenance of anaerobiosis in the rumen and utilization of acetate through the glyoxylate pathway are discussed.


2002 ◽  
Vol 184 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Michael J. Hynes ◽  
Oliver W. Draht ◽  
Meryl A. Davis

ABSTRACT Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme required for gluconeogenesis when microorganisms grow on carbon sources metabolized via the tricarboxylic acid (TCA) cycle. Aspergillus nidulans acuF mutants isolated by their inability to use acetate as a carbon source specifically lack PEPCK. The acuF gene has been cloned and shown to encode a protein with high similarity to PEPCK from bacteria, plants, and fungi. The regulation of acuF expression has been studied by Northern blotting and by the construction of lacZ fusion reporters. Induction by acetate is abolished in mutants unable to metabolize acetate via the TCA cycle, and induction by amino acids metabolized via 2-oxoglutarate is lost in mutants unable to form 2-oxoglutarate. Induction by acetate and proline is not additive, consistent with a single mechanism of induction. Malate and succinate result in induction, and it is proposed that PEPCK is controlled by a novel mechanism of induction by a TCA cycle intermediate or derivative, thereby allowing gluconeogenesis to occur during growth on any carbon source metabolized via the TCA cycle. It has been shown that the facB gene, which mediates acetate induction of enzymes specifically required for acetate utilization, is not directly involved in PEPCK induction. This is in contrast to Saccharomyces cerevisiae, where Cat8p and Sip4p, homologs of FacB, regulate PEPCK as well as the expression of other genes necessary for growth on nonfermentable carbon sources in response to the carbon source present. This difference in the control of gluconeogenesis reflects the ability of A. nidulans and other filamentous fungi to use a wide variety of carbon sources in comparison with S. cerevisiae. The acuF gene was also found to be subject to activation by the CCAAT binding protein AnCF, a protein homologous to the S. cerevisiae Hap complex and the mammalian NFY complex.


Sign in / Sign up

Export Citation Format

Share Document