scholarly journals Structure and dynamics of the DBHS protein family members SFPQ, NONO and PSPC1

2014 ◽  
Vol 70 (a1) ◽  
pp. C1655-C1655
Author(s):  
Gavin Knott ◽  
Mihwa Lee ◽  
Daniel Passon ◽  
Agata Sadowska ◽  
Archa Fox ◽  
...  

The Drosophila behaviour/human splicing (DBHS) proteins are a family of obligatory dimeric proteins found in higher order mammals down to the simplest invertebrates. `Multifunctional protein family' essentially captures what is understood regarding DBHS protein function where they are cited to regulate transcriptional initiation, the processing and export of RNA, maintenance of genomic DNA, nuclear pH homeostasis and carcinogenesis [1]. Furthermore, with roles in binding a diverse range of RNAs and both single and double stranded DNA, it is difficult to establish a coherent picture for their nuclear activities. In humans, the family consists of three highly conserved members, namely Non-POU domain-containing octamer-binding protein (NONO/p54nrb), splicing factor proline/glutamine rich (SFPQ/PSF) and paraspeckle protein component 1 (PSPC1). The conserved DBHS region of these proteins comprises tandem RNA recognition motifs (RRMs), a NOPS domain and a C-terminal coiled-coil domain. The unique structural arrangement of these domains facilitates an intimate dimerisation interface that gives rise to a novel arrangement of RRMs [2]. Given this interface, it is not surprising that DBHS proteins likely exist as either homo- or heterodimers in vivo. Here we report the first structure of the ancestral C. elegans DBHS protein, NONO-1, refined to 2.8 Å. The structure clearly illustrates the consistent obligatory nature of DBHS dimerisation and through isothermal titration calorimetry we have demonstrated that human DBHS proteins prefer a heterodimeric state in vitro. There is a growing appreciation for the fundamental significance of DBHS proteins in human health and disease and this work highlights the critical need for a more robust assessment of in vivo DBHS function.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanjali Bhattacharya ◽  
Trupti N. Patel

AbstractPlant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


2021 ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group ( N ε ) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N -acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c , cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase ( Cj Acs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter Cj LatA), and a NAD + -dependent (class III) sirtuin deacylase ( Cj CobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of Cj Acs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase ( Cj Acs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of Cj Acs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Encarnación Medina-Carmona ◽  
Rogelio J. Palomino-Morales ◽  
Julian E. Fuchs ◽  
Esperanza Padín-Gonzalez ◽  
Noel Mesa-Torres ◽  
...  

Abstract Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S and to develop new pharmacological therapies to rescue this function.


2001 ◽  
Vol 21 (21) ◽  
pp. 7509-7522 ◽  
Author(s):  
Wei-fang Shen ◽  
Keerthi Krishnan ◽  
H. J. Lawrence ◽  
Corey Largman

ABSTRACT Despite the identification of PBC proteins as cofactors that provide DNA affinity and binding specificity for the HOX homeodomain proteins, HOX proteins do not demonstrate robust activity in transient-transcription assays and few authentic downstream targets have been identified for these putative transcription factors. During a search for additional cofactors, we established that each of the 14 HOX proteins tested, from 11 separate paralog groups, binds to CBP or p300. All six isolated homeodomain fragments tested bind to CBP, suggesting that the homeodomain is a common site of interaction. Surprisingly, CBP-p300 does not form DNA binding complexes with the HOX proteins but instead prevents their binding to DNA. The HOX proteins are not substrates for CBP histone acetyltransferase (HAT) but instead inhibit the activity of CBP in both in vitro and in vivo systems. These mutually inhibitory interactions are reflected by the inability of CBP to potentiate the low levels of gene activation induced by HOX proteins in a range of reporter assays. We propose two models for HOX protein function: (i) HOX proteins may function without CBP HAT to regulate transcription as cooperative DNA binding molecules with PBX, MEIS, or other cofactors, and (ii) the HOX proteins may inhibit CBP HAT activity and thus function as repressors of gene transcription.


2017 ◽  
Author(s):  
Sean A. Higgins ◽  
Sorel Ouonkap ◽  
David F. Savage

ABSTRACTComprehensive and programmable protein mutagenesis is critical for understanding structure-function relationships and improving protein function. However, current techniques enabling comprehensive protein mutagenesis are based on PCR and require in vitro reactions involving specialized protocols and reagents. This has complicated efforts to rapidly and reliably produce desired comprehensive protein libraries. Here we demonstrate that plasmid recombineering is a simple and robust in vivo method for the generation of protein mutants for both comprehensive library generation as well as programmable targeting of sequence space. Using the fluorescent protein iLOV as a model target, we build a complete mutagenesis library and find it to be specific and unbiased, detecting 99.8% of our intended mutations. We then develop a thermostability screen and utilize our comprehensive mutation data to rapidly construct a targeted and multiplexed library that identifies significantly improved variants, thus demonstrating rapid protein engineering in a simple one-pot protocol.


Sign in / Sign up

Export Citation Format

Share Document