scholarly journals Bond valence constraints on the composition of 3d-elements bearing tourmalines

2014 ◽  
Vol 70 (a1) ◽  
pp. C1118-C1118
Author(s):  
Oleg Vereshchagin ◽  
Olga Frank-Kamenetskaya ◽  
Ira Rozhdestvenskaya

F.C. Hawthorne (2002) and F. Bosi (2011) showed that bond valence approach is to be applied to stability prediction of tourmaline structure with different chemical composition. Using this approach we considered bond valence constraints on occupation of Y, Z, V and W sites of Cu-, Ni-bearing tourmalines. From the standpoint of the bond valence approach, [3YW] unit is unstable if W site is fully occupied by O2-. The stability of [3YW] unit decreases along a row: 3 divalent cations → 2 divalent cations + 1 trivalent cation → 2 trivalent cation + 1 divalent cations → 3 trivalent cations if W site is fully occupied by OH- or F-. There is no limitation on 3d elements and aluminum content in [2ZYV] if V site is fully occupied by OH-. The [2ZYV] unit is unstable if V site is fully occupied by O2-. The data, obtained from calculation of bond valences are in a good agreement with results of single crystal structure refinements of synthetic Cu- (Ertl et al., 2013) and Ni-tourmalines: Cu-bearing olenite with a CuO content of 8.39 wt.% [a = 15.849(1), c =7.087(1) Å, R = 2.5%] and Ni-bearing olenite with a NiO content of 18.96 wt.% [a = 15.890(2), c = 7.1815(8), R = 3.1%]. In all cases W and V sites are predominantly occupied by OH- anions. The composition of [3YW] units are [(Cu1.80Al1.20)(OH)0.60F0.40] and [(Ni1.80Al1.20)(OH)1.00]. Breaking of charge balance with increasing of bivalent cations is maintained by increasing of portion of vacancies at X site and increasing of content of trivalent cations (Al, B) at T site.

2019 ◽  
Vol 22 (4) ◽  
pp. 129-135
Author(s):  
Akram La Kilo ◽  
Triwahyuni S. Umamah ◽  
Lukman A. R. Laliyo

The aim of this research was to study the stability of the structure of the ZrO2 doped with trivalent oxide Zr1-xMxO2-δ (M = La3+, Nd3+, Sm3+, Eu3+, Gd3+, Y3+, Er3+, Yb3+ and Lu3+ through atomistic modelling and bond valence sum method. Short range potential used in this study was Buckinghams’ potential. Result of geometry optimization at constant pressure shown both cell parameters of ZrO2 was in good agreement with experimental results because of the difference was only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO2 makes the lattice energy of the doped structure was more positive so that the stability of the doped ZrO2 structure decreases. The decrease in the stability of ZrO2 doped with Y3+, Er3+, Yb3+ and Lu3+was smaller than ZrO2 doped with La3+, Nd3+, Sm3+, Eu3+ and Gd3+. BVS results shown that the structure of ZrO2 doped with La3+was not appropriate because it has different value of BVS was more than 0.1


Clay Minerals ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 73-81 ◽  
Author(s):  
A. Wiewióra

AbstractA unified system of vector representation of chemical composition is proposed for the phyllosilicates based on projection of the composition, as given by crystallochemical formula, onto a field with orthogonal axes chosen for octahedral divalent cations, R2+, and Si (X, Y, respectively), and oblique axes for octahedral trivalent cations, R3+, and vacancies, □, (V, Z, respectively). Point coordinates for each set of axes were used to define the direction and length of the unit vectors for phyllosilicates belonging to different groups. Parallel to these fundamental directions the composition isolines were drawn in the projection fields. Applied to micas, this system enables control of the chemical composition by the general crystallochemical formula covering all varieties of Li-free dioctahedral and trioctahedral micas:where z (number of vacancies) = (y-x+ m)/2; m (layer charge) =1; u+y+z = 3. There is a similar formula for vacancy-free lithian micas:where w = m — x+y;m=1; u+y+w = 3, and for Li-free brittle micas:where z = (y — x+m)/2; m = 2; u+y+z = 3. Projection fields were used to classify micas.


1959 ◽  
Vol 12 (1) ◽  
pp. 73-74 ◽  
Author(s):  
W. S. Mackenzie ◽  
J. V. Smith
Keyword(s):  

2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


2014 ◽  
Vol 70 (12) ◽  
pp. 2040-2046 ◽  
Author(s):  
L. Chekli ◽  
S. Phuntsho ◽  
L. D. Tijing ◽  
J. L. Zhou ◽  
J.-H. Kim ◽  
...  

Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca2+.


2011 ◽  
Vol 137 ◽  
pp. 72-76
Author(s):  
Wei Zhang ◽  
Xian Wen ◽  
Yan Qun Jiang

A proper orthogonal decomposition (POD) method is applied to study the global stability analysis for flow past a stationary circular cylinder. The flow database at Re=100 is obtained by CFD software, i.e. FLUENT, with which POD bases are constructed by a snapshot method. Based on the POD bases, a low-dimensional model is established for solving the two-dimensional incompressible NS equations. The stability of the flow solution is evaluated by a POD-Chiba method in the way of the eigensystem analysis for the velocity disturbance. The linear stability analysis shows that the first Hopf bifurcation takes place at Re=46.9, which is in good agreement with available results by other high-order accurate stability analysis methods. However, the calculated amount of POD is little, which shows the availability and advantage of the POD method.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


2018 ◽  
Vol 855 ◽  
pp. 1130-1155 ◽  
Author(s):  
Cunjing Lv ◽  
Michael Eigenbrod ◽  
Steffen Hardt

We investigate experimentally and theoretically the stability and collapse of holes in liquid layers on bounded substrates with various wettabilities. It is shown that for a liquid layer with a thickness of the order of the capillary length, a stable hole exists when the hole diameter is bigger than a critical value $d_{c}$. Consequently, a further increase of the liquid volume causes the hole to collapse. It is found that$d_{c}$increases with the size of the container, but its dependence on the contact angle is very weak. The experimental results are compared with theory, and good agreement is obtained. Moreover, we present investigations of the dynamics of the hole and the evolution of the liquid film profile after the collapse. The diameter of the hole during collapse and the minimum thickness of the liquid film shortly after the collapse obey different power laws with time. Simple theoretical models are developed which indicate that the collapse of the hole is triggered by surface tension and the subsequent closure process results from inertia, whereas the growth of the liquid column after hole closure results from the balance between the capillary force and inertia. Corresponding scaling coefficients are determined.


2001 ◽  
Vol 124 (2) ◽  
pp. 398-405 ◽  
Author(s):  
S. Yoshimoto ◽  
S. Oshima ◽  
S. Danbara ◽  
T. Shitara

In this paper, the stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles is investigated theoretically and experimentally. In these bearing types, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes located at one end of each spiral groove. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes, which results from shaft rotation. In addition, water pressure is also increased by the viscous pumping effect of the spiral grooves. The stability of the proposed bearing is theoretically predicted using the perturbation method, and calculated results are compared with experimental results. It was consequently found that the proposed bearing is very stable at high speeds and theoretical predictions show good agreement with experimental data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ioan Stroia ◽  
Ionuţ -Tudor Moraru ◽  
Maria Miclăuş ◽  
Ion Grosu ◽  
Claudia Lar ◽  
...  

In the context of helical chirality, bridging of biphenyl units leads to banister-type compounds and the stability of the resulted atropisomers may increase dramatically if suitable changes are performed in the linker unit that coils around the biphenyl moiety. A rigorous density functional theory (DFT) study was conducted for macrocycles containing rigid oxime ether segments connected to the biphenyl backbone in order to determine how the rotation barriers are influenced by the presence of either a flexible oligoethyleneoxide or a more rigid m–xylylene component in the macrocycle. The calculated values for the racemization barrier were in good agreement with those obtained experimentally and confirm the benefit of introducing a more rigid unit in the macrocycle on the stability of atropisomers. Solid-state data were obtained and computed data were used to assess the contribution brought by supramolecular associations observed in the lattice to the stabilization of the crystal structure. Beside introducing rigidity in the linker, complexation of flexible macrocycles with alkali metal ions is also contributing to the stability of atropisomers, leading to values for the racemization barrier matching that of the rigid macrocycle. Using diethylammonium cation as guest for the macrocycle, a spectacular increase in the barrier to rotation was observed for the resulted pseudo[2]rotaxane.


Sign in / Sign up

Export Citation Format

Share Document