scholarly journals Crystal structures of γ-glutamyltranspeptidase in complex with inhibitors

2014 ◽  
Vol 70 (a1) ◽  
pp. C847-C847
Author(s):  
Kei Hirabayashi ◽  
Tomoyo Ida ◽  
Chunjie Li ◽  
Hideyuki Suzuki ◽  
Keiichi Fukuyama ◽  
...  

γ-Glutamyltranspeptidase (GGT; EC 2.3.2.2) is involved in the degradation of γ-glutamyl compounds such as glutathione (GSH; γ-glutamyl-cysteinyl-glycine) . A major physiological role of this enzyme is to cleave the extracellular GSH as a source of cysteine for intracellular glutathione biosynthesis. Another crucial role of GGT is to cleave glutathione-S-conjugates as a key step in detoxification of xenobiotics and drug metabolism. In mammals, GGT has been implicated in physiological disorders such as Parkinson's disease, other neurodegenerative diseases including Alzheimer's disease and cardiovascular disease. The indispensable roles played by GGT in GSH-mediated detoxification and cellular response to oxidative stress suggest that GGT is an attractive pharmaceutical target. We here report the binding mode of acivicin, a well-known glutamine antagonist, to B. subtilis GGT at 1.8 Å resolution showing that acivicin is bound to the Oγ atom of Thr403, the catalytic nucleophile of the enzyme, through its C3 atom [1]. The observed electron density around the C3 atom was best fitted to the planar and sp2 hybridized carbon, consistent with a simple nucleophilic substitution of Cl at the imino carbon by Oγ atom of Thr403. Furthermore, comparison of three bacterial enzymes, the GGTs from E. coli, H. pylori and B. subtilis in complex with acivicin, showed significant diversity in the orientation of the dihydroisoxazole ring among three GGTs. The differences are discussed in terms of the recognition of the α-amino and α-carboxy groups in preference to the dihydroisoxazole ring as observed in time-lapse soaking crystal structures of B. subtilis GGT with acivicin.

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 982
Author(s):  
Xiaoyan Peng ◽  
Rongguang Zhang ◽  
Chen Wang ◽  
Feiyan Yu ◽  
Mingyang Yu ◽  
...  

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L. lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes’ migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes’ movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB’s potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


2008 ◽  
Vol 190 (18) ◽  
pp. 6170-6177 ◽  
Author(s):  
Linda D. Rankin ◽  
Diane M. Bodenmiller ◽  
Jonathan D. Partridge ◽  
Shirley F. Nishino ◽  
Jim C. Spain ◽  
...  

ABSTRACT Chromatin immunoprecipitation and microarray (ChIP-chip) analysis showed that the nitric oxide (NO)-sensitive repressor NsrR from Escherichia coli binds in vivo to the promoters of the tynA and feaB genes. These genes encode the first two enzymes of a pathway that is required for the catabolism of phenylethylamine (PEA) and its hydroxylated derivatives tyramine and dopamine. Deletion of nsrR caused small increases in the activities of the tynA and feaB promoters in cultures grown on PEA. Overexpression of nsrR severely retarded growth on PEA and caused a marked repression of the tynA and feaB promoters. Both the growth defect and the promoter repression were reversed in the presence of a source of NO. These results are consistent with NsrR mediating repression of the tynA and feaB genes by binding (in an NO-sensitive fashion) to the sites identified by ChIP-chip. E. coli was shown to use 3-nitrotyramine as a nitrogen source for growth, conditions which partially induce the tynA and feaB promoters. Mutation of tynA (but not feaB) prevented growth on 3-nitrotyramine. Growth yields, mutant phenotypes, and analyses of culture supernatants suggested that 3-nitrotyramine is oxidized to 4-hydroxy-3-nitrophenylacetate, with growth occurring at the expense of the amino group of 3-nitrotyramine. Accordingly, enzyme assays showed that 3-nitrotyramine and its oxidation product (4-hydroxy-3-nitrophenylacetaldehyde) could be oxidized by the enzymes encoded by tynA and feaB, respectively. The results suggest that an additional physiological role of the PEA catabolic pathway is to metabolize nitroaromatic compounds that may accumulate in cells exposed to NO.


Author(s):  
Jacob Bobonis ◽  
André Mateus ◽  
Birgit Pfalz ◽  
Sarela Garcia-Santamarina ◽  
Marco Galardini ◽  
...  

ABSTRACTRetrons are genetic retroelements, commonly found in bacterial genomes and recently repurposed as genome editing tools. Their encoded reverse transcriptase (RT) produces a multi-copy single-stranded DNA (msDNA). Despite our understanding of their complex biosynthesis, the function of msDNAs and therefore, the physiological role of retrons has remained elusive. We establish that the retron-Sen2 in Salmonella Typhimurium encodes a toxin, which we have renamed as RcaT (Retron cold-anaerobic Toxin). RcaT is activated when msDNA biosynthesis is perturbed and its toxicity is higher at ambient temperatures or during anaerobiosis. The RT and msDNA form together the antitoxin unit, with the RT binding RcaT, and the msDNA enabling the antitoxin activity. Using another E. coli retron, we establish that this toxin/antitoxin function is conserved, and that RT-toxin interactions are cognate. Altogether, retrons constitute a novel family of tripartite toxin/antitoxin systems.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Masahiko Imashimizu ◽  
Kan Tanaka ◽  
Nobuo Shimamoto

If Mg2+ ion is replaced by Mn2+ ion, RNA polymerase tends to misincorporate noncognate nucleotide, which is thought to be one of the reasons for the toxicity of Mn2+ ion. Therefore, most cells have Mn2+ ion at low intracellular concentrations, but cyanobacteria need the ion at a millimolar concentration to maintain photosynthetic machinery. To analyse the mechanism for resistance against the abundant Mn2+ ion, we compared the properties of cyanobacterial and E. coli RNA polymerases. The cyanobacterial enzyme showed a lower level of abortive transcription and less misincorporation than the E. coli enzyme. Moreover, the cyanobacterial enzyme showed a slower rate of the whole elongation by an order of magnitude, paused more frequently, and cleaved its transcript faster in the absence of NTPs. In conclusion, cyanobacterial RNA polymerase maintains the fidelity of transcription against Mn2+ ion by deliberate incorporation of a nucleotide at the cost of the elongation rate. The cyanobacterial and the E. coli enzymes showed different sensitivities to Mg2+ ion, and the physiological role of the difference is also discussed.


Author(s):  
Olga Sokolova ◽  
Michael Naumann

AbstractInfection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.


2004 ◽  
Vol 70 (7) ◽  
pp. 3807-3813 ◽  
Author(s):  
Zhong Zheng ◽  
Qiang Gong ◽  
Tao Liu ◽  
Ying Deng ◽  
Jin-Chun Chen ◽  
...  

ABSTRACT 3-Hydroxydecanoic acid (3HD) was produced in Escherichia coli by mobilizing (R)-3-hydroxydecanoyl-acyl carrier protein-coenzyme A transacylase (PhaG, encoded by the phaG gene). By employing an isogenic tesB (encoding thioesterase II)-negative knockout E. coli strain, CH01, it was found that the expressions of tesB and phaG can up-regulate each other. In addition, 3HD was synthesized from glucose or fructose by recombinant E. coli harboring phaG and tesB. This study supports the hypothesis that the physiological role of thioesterase II in E. coli is to prevent the abnormal accumulation of intracellular acyl-coenzyme A.


2019 ◽  
Author(s):  
Matthias Wehrmann ◽  
Maxime Toussaint ◽  
Jens Pfannstiel ◽  
Patrick Billard ◽  
Janosch Klebensberger

AbstractEver since the discovery of the first rare earth element (REE)-dependent enzyme, the physiological role of lanthanides has become an emerging field of research due to the potential environmental implications and biotechnological opportunities. InPseudomonas putidaKT2440, the two pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) PedE and PedH are inversely produced in response to La3+-availability. This REE-switch is orchestrated by a complex regulatory network including the PedR2/PedS2 two-component system and is important for efficient growth on several alcoholic volatiles. AsP. putidais exposed to a broad variety of organic compounds in its natural soil habitat, the cellular responses towards La3+during growth on various carbon and energy sources were investigated with a differential proteomic approach. Apart from the Ca2+-dependent enzyme PedE, the differential abundance of most other identified proteins was conditional and revealed a substrate specificity. Concomitant with the proteomic changes, La3+had a beneficial effect on lag-phases while causing reduced growth rates and lower optical densities in stationary phase during growth on glycerol. When these growth phenotypes were evaluated with mutant strains, a novel metabolic route for glycerol utilization was identified that seems to be functional in parallel with the main degradation pathway encoded by theglpFKRDoperon. The newly discovered route is initiated by PedE and/or PedH, which most likely convert glycerol to glyceraldehyde. In the presence of lanthanum, glyceraldehyde seems to be further oxidized to glycerate, which, upon phosphorylation to glycerate-2-phosphate by the glycerate kinase GarK, is finally channelled into the central metabolism.ImportanceThe biological role of rare earth elements has long been underestimated and research has mainly focused on methanotrophic bacteria. We have recently demonstrated thatP. putida,a plant growth promoting bacterium that thrives in the rhizosphere of various feed crops, possesses a REE-dependent alcohol dehydrogenase (PedH), but knowledge about lanthanide-dependent effects on physiological traits in non-methylotrophic bacteria is still scarce. This study demonstrates that the cellular response ofP. putidaKT2440 towards La3+is mostly substrate specific and that during growth on glycerol, La3+has a severe effect on several growth parameters. We provide compelling evidence that the observed physiological changes are linked to the catalytic activity of PedH and thereby identify a novel route for glycerol metabolism in this biotechnological relevant organism. Overall, these findings demonstrate that lanthanides can alter important physiological traits of non-methylotrophic bacteria, which might consequently influence their competitiveness during colonization of various environmental niches.


2019 ◽  
Author(s):  
Toshi Mishra ◽  
Petety V. Balaji

ABSTRACTRhamnose is a constituent of lipo- and capsular polysaccharides, and cell surface glycoproteins. L-rhamnose is biosynthesized by the rml or udp pathway and D-rhamnose by the gdp pathway. Disruption of its biosynthesis affects survival, colonisation, etc. Rhamnosides are commercially important in pharmaceutical and cosmetics industries. HMM profiles were used to investigate the prevalence of the three pathways in completely sequenced genomes and metagenomes. The three pathways are mutually exclusive except in Pseudomonas which has both rml and gdp pathways. The rml pathway is restricted to bacteria (42% genomes), archaea (21%) and bacteriophages, and absent in eukaryotes and other viruses. The gdp pathway is restricted to Pseudomonas and Aneurinibacillus. The udp pathway is primarily found in plants, fungi and algae, and in human faecal metagenomic samples. The rml pathway is found in >40% genomes of Actinobacteria, Bacteroidetes, Crenarchaeota, Cyanobacteria, Fusobacteria and Proteobacteria but in <20% genomes of Chlamydiae, Euryarchaeota and Tenericutes. The udp pathway is found in all genomes of Streptophyta, <=25% genomes of Ascomycota and Chordata, and none of the genomes of Arthropoda and Basidiomycota. Some genera which lack any of these pathways are Chlamydia, Helicobacter, Listeria, Mycoplasma, Pasteurella, Rickettsia and Staphylococcus. Organisms such as E. coli and Salmonella enterica showed significant strain-specific differences in the presence/absence of rhamnose pathways. Identification of rhamnose biosynthesis genes facilitates profiling their expression pattern, and in turn, better understanding the physiological role of rhamnose. Knowledge of phylogenetic distribution of biosynthesis pathways helps in fine graining the taxonomic profiling of metagenomes.AUTHOR SUMMARYIn the present study, we have investigated the prevalence of rhamnose biosynthesis pathways in completely sequenced genomes and metagenomes. It is observed that the prevalence of rhamnose is highly clade specific: present in all plants but in less than half of all prokaryotes. Among chordates, only the Chinese rufous horseshoe bat has rhamnose biosynthesis pathway and this exclusive presence is quite baffling. The effect of disrupting rhamnose biosynthesis has been reported in a few prokaryotes and all these cases pointed to the essentiality of rhamnose for critical physiological processes such as survival, colonisation, etc. In this background, it is surprising that many of the prokaryotes such as Escherichia coli and Salmonella enterica show significant strain-specific differences in the presence/absence of rhamnose pathway. This study will facilitate the experimental characterization of rhamnose biosynthesis genes in organisms where this pathway has not been characterised yet, eventually leading to the elucidation of the biological role of rhamnose. Phylum-, genus-, species- and strain-level differences found with respect to presence of rhamnose biosynthesis pathway genes can be used as a tool for taxonomic profiling of metagenome samples. This study could also annotate a significant number of orphan proteins in the TrEMBL database.


2018 ◽  
Author(s):  
Lyly Luhachack ◽  
Ilya Shamovsky ◽  
Evgeny Nudler

AbstractHydrogen sulfide (H2S) is a ubiquitous gaseous molecule that is endogenously produced in both eukaryotes and prokaryotes. Its role as a pleiotropic signaling molecule has been well characterized in mammals1,2. In contrast, the physiological role of H2S in bacteria only recently became apparent; H2S acts as a cytoprotectant against antibiotics-induced stress and affect the cell’s ability to maintain redox homeostasis3-5. InE. coli, endogenous H2S production is primarily dependent on 3-mercaptopyruvate sulfurtransferase (3MST), encoded bymstA, previously known assseA3,4. Here, we show that cells lacking 3MST acquired a unique phenotypic suppressor mutation resulting in compensatory H2S production and tolerance to antibiotics and oxidative stress. Using whole genome sequencing, we mapped a non-synonymous single nucleotide polymorphism (SNP) to uncharacterized Laci-type transcription factor, YcjW. We identified transcriptional regulatory targets of YcjW and discovered a major target, thiosulfate sulfurtransferase PspE, as an alternative mechanism for H2S biosynthesis. Deletion ofpspEwas sufficient to antagonize phenotypic suppression. Our results reveal a complex interaction between cell metabolism and H2S production and the role, a hithero uncharacterized transcription factor, YcjW, plays in linking the two.


2018 ◽  
Vol 293 (47) ◽  
pp. 18309-18317
Author(s):  
Chong Shen ◽  
Yinghui Liu ◽  
Haijia Yu ◽  
Daniel R. Gulbranson ◽  
Igor Kogut ◽  
...  

Sec1/Munc18 (SM) proteins promote intracellular vesicle fusion by binding to N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs). A key SNARE-binding mode of SM proteins involves the N-terminal peptide (N-peptide) motif of syntaxin, a SNARE subunit localized to the target membrane. In in vitro membrane fusion assays, inhibition of N-peptide motif binding previously has been shown to abrogate the stimulatory function of Munc18-1, a SM protein involved in synaptic exocytosis in neurons. The physiological role of the N-peptide–binding mode, however, remains unclear. In this work, we addressed this key question using a “clogged” Munc18-1 protein, in which an ectopic copy of the syntaxin N-peptide motif was directly fused to Munc18-1. We found that the ectopic N-peptide motif blocks the N-peptide–binding pocket of Munc18-1, preventing the latter from binding to the native N-peptide motif on syntaxin-1. In a reconstituted system, we observed that clogged Munc18-1 is defective in promoting SNARE zippering. When introduced into induced neuronal cells (iN cells) derived from human pluripotent stem cells, clogged Munc18-1 failed to mediate synaptic exocytosis. As a result, both spontaneous and evoked synaptic transmission was abolished. These genetic findings provide direct evidence for the crucial role of the N-peptide–binding mode of Munc18-1 in synaptic exocytosis. We suggest that clogged SM proteins will also be instrumental in defining the physiological roles of the N-peptide–binding mode in other vesicle-fusion pathways.


Sign in / Sign up

Export Citation Format

Share Document