scholarly journals Non-crystalline samples under high-pressure conditions

2014 ◽  
Vol 70 (a1) ◽  
pp. C394-C394
Author(s):  
Liangliang Li ◽  
Renfeng Li ◽  
Lisa Luhongwang Liu ◽  
Arthur Haozhe Liu ◽  
Peter Chupas ◽  
...  

Taking advantage of synchrotron x-ray diffraction, PDF and tomographic techniques, the P-V curve of non-crystalline samples were studied under high-pressure conditions. Two element and several metallic glass cases were performed. The procedure of crystallization of amorphous Se upon compression at room temperature, which was studied in diamond anvil cell combined synchrotron x-ray PDF and 3D imaging techniques; the melting and solidification procedure of Ga in large volume press at room and high temperature; and complicated crystallization, re-rystalization, melting behavior of Ce-based metallic glass, will be presented to show the capability of revealing structure and dynamics behaviors in P-V-T-t domains using these advanced techniques.

Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


2008 ◽  
Vol 23 (12) ◽  
pp. 3409-3414 ◽  
Author(s):  
Zsolt Kovács ◽  
Erhard Schafler ◽  
Ádám Révész

Commercial Zr44Ti11Cu10Ni10Be25 bulk metallic glass (Vitreloy 1b) disk was subjected to extreme plastic deformation by high-pressure torsion at room temperature. Two-dimensional mapping by high-intensity synchrotron x-ray diffraction in the plane of the shear deformation reveals no evidence of nanocrystallization; however, average effective volume changes as a function of the deformation can be evaluated.


2011 ◽  
Vol 75 (5) ◽  
pp. 2649-2655 ◽  
Author(s):  
F. Nestola ◽  
T. Balić-Žunić ◽  
M. Koch-Müller ◽  
L. Secco ◽  
F. Princivalle ◽  
...  

AbstractThe crystal structure of Fe2SiO4 spinel at room temperature was investigated at seven different pressures by X-ray diffraction, using a diamond anvil cell to examine the influence of Fe substitution on ringwoodite behaviour at high pressure. The results compared with those of a pure Mg endmember show that the substitution of Fe into the spinel structure causes only small changes in the compression rate of coordination polyhedra and the distortion of the octahedron. The data show that the compression rate for the octahedron and tetrahedron in (Mg,Fe)2SiO4 can be considered statistically equal for FeO6 and MgO6, as well as for SiO4 in both the endmembers. This shows why almost identical bulk moduli are reported along the solid solution in recent literature.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


2011 ◽  
Vol 82 (5) ◽  
pp. 055111 ◽  
Author(s):  
Benedetta Periotto ◽  
Fabrizio Nestola ◽  
Tonci Balic-Zunic ◽  
Ross J. Angel ◽  
Ronald Miletich ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone Anzellini ◽  
Michael T. Wharmby ◽  
Francesca Miozzi ◽  
Annette Kleppe ◽  
Dominik Daisenberger ◽  
...  

Abstract The isothermal equation of state of silicon has been determined by synchrotron x-ray diffraction experiments up to 105.2 GPa at room temperature using diamond anvil cells. A He-pressure medium was used to minimize the effect of uniaxial stress on the sample volume and ruby, gold and tungsten pressure gauges were used. Seven different phases of silicon have been observed along the experimental conditions covered in the present study.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Daniel Diaz-Anichtchenko ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Simone Anzellini ◽  
Daniel Errandonea

We report on high-pressure synchrotron X-ray diffraction measurements on Ni3V2O8 at room-temperature up to 23 GPa. According to this study, the ambient-pressure orthorhombic structure remains stable up to the highest pressure reached in the experiments. We have also obtained the pressure dependence of the unit-cell parameters, which reveals an anisotropic compression behavior. In addition, a room-temperature pressure–volume third-order Birch–Murnaghan equation of state has been obtained with parameters: V0 = 555.7(2) Å3, K0 = 139(3) GPa, and K0′ = 4.4(3). According to this result, Ni3V2O8 is the least compressible kagome-type vanadate. The changes of the crystal structure under compression have been related to the presence of a chain of edge-sharing NiO6 octahedral units forming kagome staircases interconnected by VO4 rigid tetrahedral units. The reported results are discussed in comparison with high-pressure X-ray diffraction results from isostructural Zn3V2O8 and density-functional theory calculations on several isostructural vanadates.


Sign in / Sign up

Export Citation Format

Share Document