scholarly journals Development of a design feature database to support design for additive manufacturing

2012 ◽  
Vol 32 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Shajahan Bin Maidin ◽  
Ian Campbell ◽  
Eujin Pei
Author(s):  
Andrew P. Armstrong ◽  
Michael Barclift ◽  
Timothy W. Simpson

Design for Additive Manufacturing is an evolving field that allows alternative design approaches to facilitate improvements in parts and builds by taking advantage of the capability of additive manufacturing (AM). Currently, available CAD software does not provide sufficient tools for AM designers, which results in a complex iterative process requiring multiple file types and programs. The complicated process of generating build time and cost estimates prevents designers from being able to efficiently optimize their parts for the AM process. Through the Solidworks Application Programming Interface a user-controlled macro was developed to generate build time and cost estimates by automatically creating support structures from multiple planes of comparative Ray Trace vector grids. The macro provides the user with visual and qualitative part information at the first stage in the design/file workflow, curtailing the current complex workflow to reduce overall design time. The macro is focused on the material extrusion process due to the diversity in available machines and build control, favoring user knowledge of specific parameters to calculate the build time and cost. Limitations of the approach along with extensions to other AM processes are also discussed.


2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


2020 ◽  
Vol 11 (1) ◽  
pp. 238
Author(s):  
Yun-Fei Fu ◽  
Kazem Ghabraie ◽  
Bernard Rolfe ◽  
Yanan Wang ◽  
Louis N. S. Chiu

The smooth design of self-supporting topologies has attracted great attention in the design for additive manufacturing (DfAM) field as it cannot only enhance the manufacturability of optimized designs but can obtain light-weight designs that satisfy specific performance requirements. This paper integrates Langelaar’s AM filter into the Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT) algorithm—a new element-based topology optimization method capable of forming smooth boundaries—to obtain print-ready designs without introducing post-processing methods for smoothing boundaries before fabrication and adding extra support structures during fabrication. The effects of different build orientations and critical overhang angles on self-supporting topologies are demonstrated by solving several compliance minimization (stiffness maximization) problems. In addition, a typical compliant mechanism design problem—the force inverter design—is solved to further demonstrate the effectiveness of the combination between SEMDOT and Langelaar’s AM filter.


2021 ◽  
Vol 11 (6) ◽  
pp. 2572
Author(s):  
Stefano Rosso ◽  
Federico Uriati ◽  
Luca Grigolato ◽  
Roberto Meneghello ◽  
Gianmaria Concheri ◽  
...  

Additive Manufacturing (AM) brought a revolution in parts design and production. It enables the possibility to obtain objects with complex geometries and to exploit structural optimization algorithms. Nevertheless, AM is far from being a mature technology and advances are still needed from different perspectives. Among these, the literature highlights the need of improving the frameworks that describe the design process and taking full advantage of the possibilities offered by AM. This work aims to propose a workflow for AM guiding the designer during the embodiment design phase, from the engineering requirements to the production of the final part. The main aspects are the optimization of the dimensions and the topology of the parts, to take into consideration functional and manufacturing requirements, and to validate the geometric model by computer-aided engineering software. Moreover, a case study dealing with the redesign of a piston rod is presented, in which the proposed workflow is adopted. Results show the effectiveness of the workflow when applied to cases in which structural optimization could bring an advantage in the design of a part and the pros and cons of the choices made during the design phases were highlighted.


2021 ◽  
pp. 87-93
Author(s):  
Abhijith Ram C ◽  
D Ajith

Space travel has always been a crucial task. Exploration and experimenting on Planets in our solar system will help us understand the universe better and also, we could find the origin of life. Rovers play an important role in finding these answers. The problem we have at present is not only with technology to explore the universe but also the ability of our rockets to carry rovers to other rocks. Since a large amount of fuel is required for Space travel, we end with very little cargo that can be sent to explore. As additive manufacturing started to play a vital part in Mechanical Science, we are going to try to use that tool to build a Generative design that helps in parts consolidation, weight reduction, increase flexibility, design optimisation and cost consolidation. Since weight is an important aspect, we could reduce the present rover weight and add additional scientific tools to the rover to increase its scope of search and applications. This project focuses on features enrichment in Rovers by optimizing rover weight and design using Design for Additive Manufacturing concept.


Sign in / Sign up

Export Citation Format

Share Document