Investigation of indoor air quality and thermal comfort condition in airport terminal buildings

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehmet Kadri Akyüz ◽  
Hasim Kafali ◽  
Onder Altuntas

Purpose This paper aims to measure the thermal comfort conditions and indoor air quality parameters, through on-site measurements taken in the areas mostly occupied by the passengers and airport staff. Terminal buildings consist of areas with various functions. Heating, ventilation and air conditioning requirements vary from area to area, thus leading to challenges in the management of indoor environment quality. Therefore, the study focuses on investigating the indoor environment conditions in various areas of the terminal buildings. Design/methodology/approach In this study, the thermal comfort and indoor air quality were evaluated based on the parameters [CO2 concentration, relative humidity, temperature, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD)] collected for summer 2019 from different zones inside the International Dalaman Airport terminal building located in the southwest of Turkey. The measurements were performed in the areas mostly occupied by the airport staff and passengers (check-in area, security control areas, international departure lounge, domestic departure lounge and baggage claim hall). Findings As a result of the study, it was observed that the CO2 concentration was 480–965 ppm, the relative humidity was 51.9–75.8% and the temperature was in the range of 23.9°C–28.3°C inside the airport terminal. The PMV values were determined to be in the range of −0.23 to 0.67, and the PPD values 5–15%, which are used to measure the thermal comfort conditions. Originality/value There has been limited study on the determination of the indoor air quality in airport terminals and the investigation of the thermal comfort conditions. However, in this study, indoor air quality and thermal comfort conditions were determined by on-site measurements in the five mostly occupied areas by passengers and employees in the terminal building.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nurul Hayati Yong ◽  
Qi Jie Kwong ◽  
Kok Seng Ong ◽  
Dejan Mumovic

Purpose As suggested in many previous studies, good thermal comfort and indoor air quality (IAQ) played a significant role in ensuring human comfort, health and productivity in buildings. Hence, this study aims to evaluate the thermal comfort and IAQ conditions of open-plan office areas within a green-certified campus building through a post occupancy evaluation. Design/methodology/approach Using the field measurement method, environmental dataloggers were positioned at three office areas during office hours to measure the levels of thermal comfort parameters, CO2 concentrations and the supply air rates. At the same time, questionnaires were distributed to the available office staff to obtain their perception of the indoor environment. The findings were then compared with the recommended environmental comfort ranges and used to calculate the thermal comfort indices. Findings Results show that the physical parameters were generally within acceptable ranges of a local guideline. The neutral temperature based on the actual mean vote at these areas was 23.9°C, which is slightly lower than the predicted thermal neutrality of 25.2°C. From the surveyed findings, about 81% of the occupants found their thermal environment comfortable with high adaptation rates. A preference for cooler environments was found among the workers. Meanwhile, the air quality was perceived to be clean by a majority of the respondents, and the mean ventilation rate per person was identified to be sufficient. Research limitations/implications This study focussed on the thermal environment and air quality at selected office spaces only. More work should be carried out in other regularly occupied workplaces and study areas of the green educational building to allow a more thorough analysis of the indoor air conditions. Practical implications This paper highlights on the thermal comfort and air quality conditions of the air-conditioned office spaces in a green-certified campus building and is intended to assist the building services engineers in effective air conditioning control. The findings reported are useful for thermal comfort, IAQ and subsequently energy efficiency improvements in such building type where adjustments on the air temperature set-point can be considered according to the actual requirements. This study will be extended to other green campus spaces for a more exhaustive analysis of the indoor environment. Originality/value There is limited information pertaining to the environmental comfort levels in offices of green campus in the tropics. This study is, therefore, one of the earliest attempts to directly explore the thermal comfort and IAQ conditions in such workplace using both on-site physical measurement and questionnaire survey.


2011 ◽  
Vol 71-78 ◽  
pp. 3520-3523
Author(s):  
Xue Bin Yang ◽  
De Fa Sun ◽  
Xiang Jiang Zhou ◽  
Ji Chun Yang

This study reviews some published literatures on the benchmarking and ranking guidelines, tools and comparison of buildings. Energy performance, Indoor air quality and thermal comfort can be covered for the rating tools for buildings. Further, the energy performance can also be calculated by the other parameters related to the room thermal properties. A rating system to benchmark buildings can employ several parameters including indoor environment quality, clothing volume, predicted mean vote, operative temperature, and thermal energy consumption. It can be concluded that the indoor air quality or thermal comfort can be used to evaluate buildings due to their influence on the occupant satisfaction and job performance. Also, building benchmarking or rating will be various because Different comfort criteria may lead to different comfort temperature.


2019 ◽  
Author(s):  
Widya Nilandita ◽  
Ida Munfarida ◽  
M Ratodi ◽  
Dyah Ratri Nurmaningsih ◽  
Dedy Suprayogi

Indoor Air Quality (IAQ) is one of the critical issues in sustainable development related to human health as the primary goal. Sustainable development should address potential human exposure to pollutants and health impacts. The laboratory, as educational support in the university, has specific contaminants, but studies on IAQ and thermal comfort in the laboratory have not been studied. IAQ and thermal comfort in a laboratory are essential as they can affect the work and health of the researchers and staffs. The purpose of this study is to analyze indoor air quality in an integrated laboratory of UIN Sunan Ampel Surabaya. This research is a cross-sectional study. Data analysis was done by a quantitative descriptive method. The air quality parameters in the laboratory were temperature, relative humidity, and carbon dioxide (CO2) concentration. All settings compared to the air quality standard. The analysis on carbon dioxide (CO2) concentration, relative humidity (%RH), temperature (∘C) has shown that the indoor air does not exceed the standard according to ASHRAE standard and Health Ministry Regulation with the maximum concentration was 444,3 ppm. The fan installation and increased air filter to controlled humidity are the option to improve the indoor air quality.


Author(s):  
Zewudu Andualem ◽  
Zemichael Gizaw ◽  
Laekemariam Bogale ◽  
Henok Dagne

Background: Poor indoor air quality is a great problem in schools due to a high number of students per classroom, insufficient outside air supply, poor construction and maintenance of school buildings. Bacteria in the indoor air environment pose a serious health problem. Determination of bacterial load in the indoor environment is necessary to estimate the health hazard and to create standards for indoor air quality control. This is especially important in such densely populated facilities like schools. Methods: Institutional based cross-sectional study was conducted among 51 randomly selected classrooms of eight public primary schools from March 29–April 26, 2018. To determine the bacterial load passive air sampling settle plate method was used by exposing a Petri dish of blood agar media for an hour. The Pearson correlation matrix was employed to assess the correlation between bacterial load and physical parameters. Results: The grand total mean bacterial load was 2826.35 CFU/m3 in the morning and 4514.63 CFU/m3 in the afternoon. The lowest and highest mean bacterial load was recorded at school 3 (450.67 CFU/m3) and school 5 (7740.57 CFU/m3) in the morning and afternoon, respectively. In the morning relative humidity (r = −0.7034), PM2.5 (r = 0.5723) and PM10 (r = 0.6856); in the afternoon temperature (r = 0.3838), relative humidity (r = − 0.4014) were correlated with indoor bacterial load. Staphylococcus aureus, Coagulase-negative Staphylococcus species and Bacillus species were among isolated bacteria. Conclusions: High bacterial load was found in public primary schools in the Gondar city as compared to different indoor air biological standards. Temperature, relative humidity and particulate matter concentration (PM2.5 and PM10) were associated with the indoor bacterial load. Staphylococcus aureus, Coagulase-negative Staphylococcus species and Bacillus species were among isolated bacterial species. Attention should be given to control those physical factors which favour the growth and multiplication of bacteria in the indoor environment of classrooms to safeguard the health of students and teachers in school.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zeki Argunhan ◽  
Ali Serkan Avci

This study was carried out in order to determine the indoor air quality of the classrooms existing in university (Turkey). Relative humidity, temperature, carbon dioxide, radon, and particulate matters (PM0.5, PM1.0, PM2.5, PM5.0, and PM10) were taken into account as the parameters of indoor air quality measurements. The results obtained from the present work were interpreted by comparing them with the standards of different countries. The relations between all parameters were statistically examined by means of correlation and regression analysis in SPSS 17 statistical program. As a result, it was observed that indoor temperature was lower than the standards, yet carbon dioxide and PM values were higher than the upper limit, but relative humidity level was within comfort conditions. The average indoor radon concentrations were found to be below the recommended reference levels for International Commission on Radiological Protection (ICRP), yet it was seen that the results were relatively higher in comparison with the worldwide values. In addition, it was determined that there was a meaningful relation between outdoor relative humidity, indoor relative humidity, and particulate matters in different diameters. Some solutions were suggested for the treatment of the indoor air quality for each parameter.


2015 ◽  
Vol 4 (3) ◽  
pp. 329-348 ◽  
Author(s):  
Grainne McGill ◽  
Lukumon O. Oyedele ◽  
Keith McAllister

Purpose – Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation. Design/methodology/approach – The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use. Findings – The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system. Practical implications – The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ. Originality/value – IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.


Author(s):  
Seyed Ali Keshavarz ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Recently, attention has been given to indoor air quality due to its serious health concerns. Clearly the dispersion of pollutant is directly affected by the airflow patterns. The airflow in indoor environment is the results of a combination of several factors. In the present study, the effects of thermal plume and respiration on the indoor air quality in a ventilated cubicle were investigated using an unsteady computational modeling approach. The person-to-person contaminant transports in a ventilated room with mixing and displacement ventilation systems were studied. The effects of rotational motion of the heated manikins were also analyzed. Simulation results showed that in the cases which rotational motion was included, the human thermal plume and associated particle transport were significantly distorted. The distortion was more noticeable for the displacement ventilation system. Also it was found that the displacement ventilation system lowered the risk of person-to-person transmission in an office space in comparison with the mixing ventilation system. On the other hand the mixing system was shown to be more effective compared to the displacement ventilation in removing the particles and pollutant that entered the room through the inlet air diffuser.


Facilities ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ulrika Uotila ◽  
Arto Saari ◽  
Juha-Matti Kalevi Junnonen ◽  
Lari Eskola

Purpose Poor indoor air quality in schools is a worldwide challenge that poses health risks to pupils and teachers. A possible response to this problem is to modify ventilation. Therefore, the purpose of this paper is to pilot a process of generating alternatives for ventilation redesign, in an early project phase, for a school to be refurbished. Here, severe problems in indoor air quality have been found in the school. Design/methodology/approach Ventilation redesign is investigated in a case study of a school, in which four alternative ventilation strategies are generated and evaluated. The analysis is mainly based on the data gathered from project meetings, site visits and the documents provided by ventilation and condition assessment consultants. Findings Four potential strategies to redesign ventilation in the case school are provided for decision-making in refurbishment in the early project phase. Moreover, the research presents several features to be considered when planning the ventilation strategy of an existing school, including the risk of alterations in air pressure through structures; the target number of pupils in classrooms; implementing and operating costs; and the size of the space that ventilation equipment requires. Research limitations/implications As this study focusses on the early project phase, it provides viewpoints to assist decision-making, but the final decision requires still more accurate calculations and simulations. Originality/value This study demonstrates the decision-making process of ventilation redesign of a school with indoor air problems and provides a set of features to be considered. Hence, it may be beneficial for building owners and municipal authorities who are engaged in planning a refurbishment of an existing building.


Sign in / Sign up

Export Citation Format

Share Document