Investigation of modular odd-pole PM linear synchronous motors with flux gaps

Author(s):  
Jiameng Shi ◽  
Hao Kong ◽  
Liren Huang ◽  
Qinfen Lu ◽  
Yunyue Ye

Purpose – Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of this paper is to investigate a novel modular single-sided flat permanent magnet linear synchronous motor (PMLSM), which adopts segmented armature with the required flux gaps between segments to enhance the performance. Design/methodology/approach – Using 2D finite element analysis, the performances, such as open-flux linkage, back-EMF, average thrust force, thrust ripple, etc., are compared in different values of flux gaps, as well as different slot/pole number combinations (mainly odd numbers of poles). Finally, to show the difference of linear motor from rotary one, the detailed comparison is made between modular PMLSM and rotary PMSM. Findings – Due to flux gaps, it is found the electromagnetic performances are worsened along with flux gap width increasing to modular PMLSMs having slot number higher than pole number, but some aspects of performances such as winding factor, open-circuit flux linkage, back-EMF and average thrust can be improved to those having slot number lower than pole number. Due to the end effect of linear format, the thrust ripple is not significantly improved. Originality/value – It is concluded the proper flux gaps can be chosen to improve the performance of PMLSM with certain slot/pole combinations. A new structure of 12-slot-13-pole (hereinafter referred to as 12s/13p) PMLSM with fractional slot and alternative-teeth wound winding is designed.

Author(s):  
Y. Oner ◽  
Z.Q. Zhu ◽  
L.J. Wu ◽  
X. Ge

Purpose – Due to high electromagnetic torque at low speed, vernier machines are suitable for direct-drive applications such as electric vehicles and wind power generators. The purpose of this paper is to present an exact sub-domain model for analytically predicting the open-circuit magnetic field of permanent magnet vernier machine (PMVM) including tooth tips. The entire field domain is divided into five regions, viz. magnets, air gap, slot openings, slots, and flux-modulation pole slots (FMPs). The model accounts for the influence of interaction between PMs, FMPs and slots, and radial/parallel magnetization. Design/methodology/approach – Magnetic field distributions for slot and air-gap, flux linkage, back-EMF and cogging torque waveforms are obtained from the analytical method and validated by finite element analysis (FEA). Findings – It is found that the developed sub-domain model including tooth tips is very accurate and is applicable to PMVM having any combination of slots/FMPs/PMs. Originality/value – The main contributions include: accurate sub-domain model for PMVM is proposed for open-circuit including tooth-tip which cannot be accounted for in literature; the model accounts the interaction between flux modulation pole (FMP) and slot; developed sub-domain model is accurate and applicable to any slot/FMP/PM combinations; and it has investigated the influence of FMP/slot opening width/height on cogging torque.


Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5593
Author(s):  
Ting Yang ◽  
Takahiro Kawaguchi ◽  
Seiji Hashimoto ◽  
Wei Jiang

A switching sequence model predictive direct torque control (MPDTC) of IPMSMs for EVs in switch open-circuit fault-tolerant mode is studied in this paper. Instead of selecting one space vector from the possible four space vectors, the proposed MPDTC method selects an optimized switching sequence from two well-designed switching sequences, including three space vectors, according to a new designed cost function of which the control objectives have been transferred to the dq-axes components of the stator flux-linkage under the maximum-torque-per-ampere control. The calculation method of the durations of the adopted space vectors in the optimized switching sequence is studied to realize the stator flux-linkage reference tracking. In addition, the capacitor voltage balance method, by injecting a dc offset to the current of fault phase, is given. Compared with the conventional MPDTC method, the complicated weighting factors designing process is avoided and the electromagnetic torque ripples can be greatly suppressed. The experimental results prove the effectiveness and advantages of the proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Y. Tang ◽  
J. J. H. Paulides ◽  
E. A. Lomonova

Flux-switching motors (FSM) are competitive candidates for in-wheel traction systems. However, the analysis of FSMs presents difficulty due to their complex structure and heavy magnetic saturation. This paper presents a methodology to rapidly construct, adapt, and solve a variable magnetic equivalent circuit of 12-stator-slot 10-rotor-tooth (12/10) FSMs. Following this methodology, a global MEC model is constructed and used to investigate correlations between the radial dimensions and the open-circuit phase flux linkage of the 12/10 FSM. The constructed MEC model is validated with finite element analysis and thus proved to be able to assist designers with the preliminary design of flux-switching motors for different in-wheel traction systems.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1317
Author(s):  
Mahmoud A. Mossa ◽  
Hamdi Echeikh ◽  
Ahmed A. Zaki Diab ◽  
Hassan Haes Alhelou ◽  
Pierluigi Siano

The need for regulating the operation of unhealthy motor drives has motivated the researchers to modify the control techniques in order to be valid for the new drive state. The use of a fault-tolerant facility is an attractive feature of multiphase machines; therefore, the applicability of different controllers has been established for the operation under open-phase fault conditions. The considered control algorithms were utilized to analyze the operation of the unhealthy system and evaluating the capability of the control to regulate the speed and torque under the fault condition. However, the majority of these studies considered only one control algorithm to be tested with the faulty system without comparing its performance with other techniques. The performance comparison is a vital way to visualize the features and characteristics of each algorithm. For this purpose, this paper deals with the performance comparison of the hysteresis controller, RFOC based on resonant controller and direct torque control (DTC) control under open-circuit fault conditions. A detailed comparison between the three control techniques is presented to outline the main differences between the three control procedures and identify the most appropriate technique in between.


Author(s):  
Zhang Wei ◽  
Lin Ming Yao

Purpose – Axial field flux-switching permanent magnet machine (AFFSPMM) can be applied in the field of electric and hybrid electric vehicles because of short axial size, large torque density, and high-power density. The purpose of this paper is to improve the reliability of AFFSPMM itself, the design parameters have to be considered for attaining high self-inductances and reduced mutual-inductances. Design/methodology/approach – The original parameters of E-core AFFSPMM are designed with reference to a 600 W prototype, on the basis of which the 3-D model of the original AFFSPMM is established, and the inductances are calculated by finite element method. The influence of these parameters on the inductances, including combinations of stator and rotor pole numbers, spilt ratio, stator side tooth width, magnet thickness, and rotor pole width etc., are respectively investigated and analyzed under the constant copper loss. Findings – The relationships of rotor pole numbers and inductances are deduced on the condition of the fixed stator poles. It is found that the rotor pole numbers has significant effects on the ratio of mutual-inductance to self-inductance, and the self-inductance is mainly affected by the rotor pole numbers, the split ratio, the stator tooth width, and the rotor pole width. The asymmetry of back-EMF can be largely reduced by optimizing the rotor tooth width. In this paper, the static characteristics are compared and analyzed for the original and optimal 6/14-pole AFFSPMM. Meanwhile, the open-circuit and short-circuit fault are investigated by transient analysis. The results show that the optimized E-core AFFSPMM has good fault tolerance. Originality/value – The research of inductance characteristics for E-core AFFSPMM is valuable to design the fault-tolerant machine, by which the cost of control and manufacture can be largely saved.


Author(s):  
Bruno R. O. Baptista ◽  
André M.S. Mendes ◽  
Sérgio M.A. Cruz

Purpose – The purpose of this paper is to present a comparative study of the thermal behavior and efficiency of an induction motor fed by a fault-tolerant Three-Level Neutral Point Clamped (3LNPC) inverter, under normal conditions as well as after a post-fault reconfiguration, following an open-circuit fault in the inverter. For this purpose, a Matlab/Simulink model and three-phase induction motor models using a finite element method (FEM) software were developed. Besides, some experimental tests were conducted for different values of the induction motor load torque and speed reference to validate the models. Design/methodology/approach – To assess the thermal behavior and efficiency of the motor, electromagnetic and thermal models using a FEM software were developed. The coupling with the inverter drive is accomplished through a developed model in Matlab/Simulink which also includes the control system. The simulation tests were performed for a healthy and faulty inverter at different operating points of the three-phase induction motor. To validate the FEM models some experimental tests were performed. Findings – When the inverter operates in reconfigured mode the motor losses are higher and consequently temperature is higher and the motor efficiency is lower. The developed models are an alternative to a more detailed study of the motor when fed by a 3LNPC inverter and consequent optimization of the control system. Originality/value – With the developed tools, a better understanding of the motor behavior and performance is gained, allowing to forecast scenarios and optimize fault-tolerant control strategies for the drive.


Author(s):  
Shouyi Han ◽  
Chuang Liu ◽  
Xiaodong Sun ◽  
Kaikai Diao

Purpose This paper aims to propose an effective method to verify poles polarities of switched reluctance motors (SRMs). Different from the ways of detection poles polarities by permanent magnet in SRMs, the difference of self-inductance between different winding connections is used to verify the pole polarity. Design/methodology/approach First, the winding connections with the forward and reverse series are proposed. The magnetic circuit models are established to analyze the flux linkage of different winding connections. Then, according to the difference of inductance characteristics, including the self-inductance and the mutual inductance affected by the adjacent poles, it is theoretically feasible to verify the polarity of each pole. Finally, the proposed method is verified by the simulation and experiment on a six-phase SRM. Findings First, compared to the reverse series, the forward series can produce larger self-inductance when one phase is excited at the same current excitation, which can be used to verify the poles polarities of one phase with different winding connection. Second, the mutual inductance can be used to distinguish the winding connections. Third, the difference of the maximum self-inductance of the winding, which is composed of two adjacent windings, can be used to verify the polarities of the adjacent poles. Originality/value This paper proposes an effective method to verify poles polarities of SRMs.


2016 ◽  
Vol 13 (5) ◽  
pp. 381-385 ◽  
Author(s):  
Faisal Khan ◽  
Erwan Sulaiman ◽  
Hassan Ali Soomro ◽  
Fairoz Omar ◽  
Zarafi Ahmad

Purpose The paper aims to propose and compare two new structures of a three-phase wound field salient rotor (WFSR) switched-flux motor (SFM) with 24 stator slots and 10 or 14 rotor poles, respectively, for high-speed operation. Design/methodology/approach The paper outlines the motor general construction and design concept of proposed machines. Flux linkage, average torque, rotor mechanical strength and torque–speed characteristics of both machines were analyzed and compared by two-dimensional finite element analysis (2D-FEA). Deterministic optimization method was adopted to enhance the characteristics of 24Slot-10Pole WFSR SFM. Findings The paper provides simulation results and discusses how 24Slot-10Pole WFSR SFM structure is superior to the 24Slot-14Pole in the aspects of flux linkage, average torque and power. It further concludes that the optimized design of 24Slot-10P has achieved 58 and 72 per cent higher average torque and power compared to initial design, as well as high average torque and power compared to 24Slot-14P design. Originality value Optimized structure of the 24Slot-10Pole WFSR SFM with non-overlapping windings has been proposed.


Author(s):  
Yihua Yao ◽  
Yi Chen ◽  
Qinfen Lu ◽  
Xiaoyan Huang ◽  
Yunyue Ye

Purpose – Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary machines. The purpose of this paper is to analyze the influence of electric loading on thrust ripple performances based on a 12 slots/14 poles (12S/14P) PMLSM. Furthermore, the method of skewed PMs to reduce thrust ripple is investigated based on multi slices 2D finite element (FE) models. Design/methodology/approach – The thrust ripple of PMLSM under open-circuit condition results from the slotting and the longitudinal end effects. Therefore, periodical model has been designed to clarify the effect of the longitudinal end effect. Under on-load condition, the thrust ripple increases and exhibits an effective component of thrust force. To analyze the thrust ripple under on-load condition, frozen permeability (FP) technique is employed. In addition, the method of skewed PMs is analyzed in this paper to obtain more smooth thrust force performance. The effectiveness of skewing accounting for skew angles, step skew numbers and slot/pole number combinations was highlighted. Findings – The longitudinal end effect dominates the thrust ripple of PMLSM in both cases, i.e., open-circuit and on-load conditions. Under on-load condition, the second harmonic component of thrust ripple related to flux linkage harmonics increases significantly. Moreover, the effectiveness of skewed PMs is largely reduced with the increase of magnetic saturation. At last, a proper skew angle and step skew number are obtained for the conventional PMLSM with fractional-slot winding. Originality/value – By 60 electrical degrees and two or three step skewed PMs, the thrust ripple can be decreased to a tolerable limite for conventional PMLSM. The thrust ripple harmonics contributed by longitudinal end effect and flux linkage harmonics are analyzed, respectively, which is beneficial to exploring other techniques such as adding end auxiliary teeth to obtain lower thrust force pulsation.


Sign in / Sign up

Export Citation Format

Share Document