scholarly journals Analytical Modeling of Flux-Switching In-Wheel Motor Using Variable Magnetic Equivalent Circuits

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Y. Tang ◽  
J. J. H. Paulides ◽  
E. A. Lomonova

Flux-switching motors (FSM) are competitive candidates for in-wheel traction systems. However, the analysis of FSMs presents difficulty due to their complex structure and heavy magnetic saturation. This paper presents a methodology to rapidly construct, adapt, and solve a variable magnetic equivalent circuit of 12-stator-slot 10-rotor-tooth (12/10) FSMs. Following this methodology, a global MEC model is constructed and used to investigate correlations between the radial dimensions and the open-circuit phase flux linkage of the 12/10 FSM. The constructed MEC model is validated with finite element analysis and thus proved to be able to assist designers with the preliminary design of flux-switching motors for different in-wheel traction systems.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2311
Author(s):  
Mudassir Raza Siddiqi ◽  
Tanveer Yazdan ◽  
Jun-Hyuk Im ◽  
Muhammad Humza ◽  
Jin Hur

This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.


2013 ◽  
Vol 823 ◽  
pp. 247-250
Author(s):  
Jie Dong ◽  
Wen Ming Cheng ◽  
Yang Zhi Ren ◽  
Yu Pu Wang

Because of the huge lifting weight and complex structure of large-tonnage gantry crane and in order to effectively design and review it, this paper aims to carry out a research on its structural performance based on the method of theoretical calculation and finite element analysis. During the early period of design, the method of theoretical calculations is adopted, and after specific design it comes the finite element analysis, so as to get the results of analysis under a variety of operating conditions, which illustrates that the structural design and review of large-tonnage gantry crane based on theoretical calculations and finite element are feasible, and also verifies that the method of finite element is an effective way to find a real dangerous cross-section, thus providing the basis for the design and manufacture of the crane structure.


Author(s):  
Jiameng Shi ◽  
Hao Kong ◽  
Liren Huang ◽  
Qinfen Lu ◽  
Yunyue Ye

Purpose – Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of this paper is to investigate a novel modular single-sided flat permanent magnet linear synchronous motor (PMLSM), which adopts segmented armature with the required flux gaps between segments to enhance the performance. Design/methodology/approach – Using 2D finite element analysis, the performances, such as open-flux linkage, back-EMF, average thrust force, thrust ripple, etc., are compared in different values of flux gaps, as well as different slot/pole number combinations (mainly odd numbers of poles). Finally, to show the difference of linear motor from rotary one, the detailed comparison is made between modular PMLSM and rotary PMSM. Findings – Due to flux gaps, it is found the electromagnetic performances are worsened along with flux gap width increasing to modular PMLSMs having slot number higher than pole number, but some aspects of performances such as winding factor, open-circuit flux linkage, back-EMF and average thrust can be improved to those having slot number lower than pole number. Due to the end effect of linear format, the thrust ripple is not significantly improved. Originality/value – It is concluded the proper flux gaps can be chosen to improve the performance of PMLSM with certain slot/pole combinations. A new structure of 12-slot-13-pole (hereinafter referred to as 12s/13p) PMLSM with fractional slot and alternative-teeth wound winding is designed.


2014 ◽  
Vol 695 ◽  
pp. 535-538
Author(s):  
Muhammad Zahir Hassan ◽  
Abdul Munir Fudhail ◽  
Mohd Azli Salim

All-terrain vehicle is famously used for various purposes such as in civilian and military. The use of finite element analysis in a preliminary design stage has been demonstrated to be cost and time effective. In this paper, the finite element analysis of a brake disc for All-Terrain-Vehicle (ATV) is demonstrated. Eulerian-Lagrangian method was employed in this work where simple annular ring was used as the disc model. This study is limited to thermal and contact analysis between the disc and brake pad. The results in term of temperature and stresses distribution is obtained and presented. Moreover, the lateral displacement of the disc due to the friction contact is also shown. These results are then used to as a technical guideline in designing brake system for a fully customized ATV


1999 ◽  
Vol 26 (6) ◽  
pp. 746-759 ◽  
Author(s):  
Xilin Lu ◽  
Huiyun Zhang ◽  
Zhili Hu ◽  
Wensheng Lu

In this paper, the dynamic response of a very complex structure which has U-shaped floors and specially shaped slant columns is described. Shaking table tests of a scale model of the building were carried out to verify the safety of the structure and to confirm the results of a finite element analysis of the building. The elastic finite element analysis was done with the help of Super-SAP 93, a well-known structural analysis program. From the shaking table test and the finite element analysis, the dynamic characteristics of the building and its maximum responses were evaluated. In the elastic region, the analytical results were in good agreement with the test results. At the end of this paper, some suggestions are given for engineering design of this type of structures.Key words: shaking table test, structural model, slant column, U-shaped plan, finite element analysis, seismic response.


2013 ◽  
Vol 380-384 ◽  
pp. 4400-4405
Author(s):  
Ke Li ◽  
Li Hua Zhang

With the development of computer science and technology, computer hardware and software conditions have been improved greatly, which can make the finite element analysis of complex structure possible. Reinforced concrete is one of the most commonly used components in building structure, the study of reinforced concrete mechanics is mainly compared through the experiment, however finite element analysis of oblique section stress is not much, based on the theory of combining elastic-plastic mechanics, using ANSYS structure analysis software carries out the analysis of numerical simulation for the oblique section stress of reinforced concrete. Through the stress-strain numerical simulation curve, this paper can get the maximum load of oblique section without corrosion reinforced concrete frame that is0.03N/mm2, finally this paper will choose three different corrosion degree of the reinforced concrete members are to carry on the analysis of numerical simulation, and compared with experimental results, the results prove the reliability of numerical simulation, to provide a reliable basis for the mechanical study of reinforced concrete inclined section.


2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Shabnam Raayai-Ardakani ◽  
Jose Luis Yagüe ◽  
Karen K. Gleason ◽  
Mary C. Boyce

The properties and behavior of a surface as well as its interaction with surrounding media depend on the inherent material constituency and the surface topography. Structured surface topography can be achieved via surface wrinkling. Through the buckling of a thin film of stiff material bonded to a substrate of a softer material, wrinkled patterns can be created by inducing compressive stress states in the thin film. Using this same principle, we show the ability to create wrinkled topologies consisting of a highly structured gradient in amplitude and wavelength, and one which can be actively tuned. The mechanics of graded wrinkling are revealed through analytical modeling and finite element analysis, and further demonstrated with experiments.


Sign in / Sign up

Export Citation Format

Share Document