Multi-level design of an isolation transformer using collaborative optimization

Author(s):  
Alexandru C. Berbecea ◽  
Frédéric Gillon ◽  
Pascal Brochet

Purpose – The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field of electrical engineering throughout discipline-based decomposition. The considered benchmark is a single-phase low voltage safety isolation transformer. Design/methodology/approach – The multidisciplinary optimization of a safety isolation transformer is addressed within this paper. The bi-level collaborative optimization (CO) strategy is employed to coordinate the optimization of the different disciplinary analytical models of the transformer (no-load and full-load electromagnetic models and thermal model). The results represent the joint decision of the three distinct disciplinary optimizers involved in the design process, under the coordination of the CO's master optimizer. In order to validate the proposed approach, the results are compared to those obtained using a classical single-level optimization method – sequential quadratic programming – carried out using a multidisciplinary feasible formulation for handling the evaluation of the coupling model of the transformer. Findings – Results show a good convergence of the CO process with the analytical modeling of the transformer, with a reduced number of coordination iterations. However, a relatively important number of disciplinary models evaluations were required by the local optimizers. Originality/value – The CO multi-level methodology represents a new approach in the field of electrical engineering. The advantage of this approach consists in that it integrates decisions from different teams of specialists within the optimal design process of complex systems and all exchanges are managed within a unique coordination process.

2017 ◽  
Vol 89 (4) ◽  
pp. 570-578 ◽  
Author(s):  
Jacek Mieloszyk

Purpose The paper aims to apply numerical optimization to the aircraft design procedures applied in the airspace industry. Design/methodology/approach It is harder than ever to achieve competitive construction. This is why numerical optimization is becoming a standard tool during the design process. Although optimization procedures are becoming more mature, yet in the industry practice, fairly simple examples of optimization are present. The more complicated is the task to solve, the harder it is to implement automated optimization procedures. This paper presents practical examples of optimization in aerospace sciences. The methodology is discussed in the article in great detail. Findings Encountered problems related to the numerical optimization are presented. Different approaches to the solutions of the problems are shown, which have impact on the time of optimization computations and quality of the obtained optimum. Achieved results are discussed in detail with relation to the used settings. Practical implications Investigated different aspects of handling optimization problems, improving quality of the obtained optimum or speeding-up optimization by parallel computations can be directly applied in the industry optimization practice. Lessons learned from multidisciplinary optimization can bring industry products to higher level of performance and quality, i.e. more advanced, competitive and efficient aircraft design procedures, which could be applied in the industry practice. This can lead to the new approach of aircraft design process. Originality/value Introduction of numerical optimization methods in aircraft design process. Showing how to solve numerical optimization problems related to advanced cases of conceptual and preliminary aircraft design.


2015 ◽  
Vol 35 (1/2) ◽  
pp. 67-90 ◽  
Author(s):  
Martina Dieckhoff ◽  
Vanessa Gash

Purpose – The purpose of this paper is to examine the relationship between unemployment and social participation and aim to identify the role of national policies and attitudes as possible mediators. Design/methodology/approach – The authors use the 2006 EU-SILC module on social participation – a data set that provides rich information on social participation for 22/23 EU countries. They adopt a two-step multi-level design, allowing them to directly examine the impact of national policies and norms on individual outcome. Findings – The paper reveals clear evidence that the unemployed have lower levels of social participation than the employed across a range of indicators. The paper also reveals that macro-level variables significantly affect the extent of these differentials in social participation. For instance, the authors found that societies that expose the unemployed to poverty risk have a larger social participation gap between the employed and the unemployed. Originality/value – While the negative association between unemployment and social participation has been established in prior work, the study is the first one to employ a “large N” comparison and to use a multi-level design to statistically test the degree to which macro-level variables mediate the negative relationship between unemployment and social participation. The analyses were able to show that societal context can significantly alleviate the negative implications of unemployment for social participation.


2017 ◽  
Vol 89 (5) ◽  
pp. 654-662 ◽  
Author(s):  
Tomasz Goetzendorf-Grabowski ◽  
Jacek Mieloszyk

Purpose Conceptual and preliminary aircraft concepts are getting mature earlier in the design process, than ever before. To achieve that advanced level of maturity, multiple multidisciplinary analyses have to be done, often with usage of numerical optimization algorithms. This calls for right tools that can handle such a demanding task. Often the toughest part of a modern design is handling an aircraft’s computational models used for different analysis. Transferring geometry and loads from one program to another, or modifying internal structure, takes time and is not productive. Authors defined the concept of a common computational model (CCM), which couples programs from different aerospace scientific disciplines. Data exchange between the software components is compatible, and multidisciplinary analysis can be automated to high degree, including numerical optimization. Design/methodology/approach The panel method was applied to aerodynamic analysis and was coupled with open-source FEM code within one computational process. Findings The numerical results proved the effectiveness of developed methodology. Practical implications Developed software can be used within the design process of a new aircraft. Originality/value This paper presents an original approach for advanced numerical analysis, as well as for multidisciplinary optimization of an aircraft. The presented results show possible applications.


Author(s):  
Timur Smetani ◽  
Elizaveta Gureva ◽  
Vyacheslav Andreev ◽  
Natalya Tarasova ◽  
Nikolai Andree

The article discusses methods for optimizing the design of the Neutron Converter research plant design with parameters that are most suitable for a particular consumer. 38 similar plant structures with different materials and sources were calculated, on the basis of which the most optimal options were found. As part of the interaction between OKBM Afrikantov JSC and the Nizhny Novgorod State Technical University named after R. E. Alekseev, the Neutron Converter research plant was designed and assembled. The universal neutron converter is a device for converting a stream of fast neutrons emitted by isotopic sources into a "standardized" value of flux density with known parameters in the volume of the central part of the product, which is the working part of the universal neutron converter. To supply neutron converters to other customer organizations (universities, research organizations and collective centers), it is necessary to take into account the experience of operating an existing facility, as well as rationalize the design process of each specific instance in accordance with the requirements of the customer.


2021 ◽  
Vol 11 (7) ◽  
pp. 3266
Author(s):  
Insub Choi ◽  
Dongwon Kim ◽  
Junhee Kim

Under high gravity loads, steel double-beam floor systems need to be reinforced by beam-end concrete panels to reduce the material quantity since rotational constraints from the concrete panel can decrease the moment demand by inducing a negative moment at the ends of the beams. However, the optimal design process for the material quantity of steel beams requires a time-consuming iterative analysis for the entire floor system while especially keeping in consideration the rotational constraints in composite connections between the concrete panel and steel beams. This study aimed to develop an optimal design method with the LM (Length-Moment) index for the steel double-beam floor system to minimize material quantity without the iterative design process. The LM index is an indicator that can select a minimum cross-section of the steel beams in consideration of the flexural strength by lateral-torsional buckling. To verify the proposed design method, the material quantities between the proposed and code-based design methods were compared at various gravity loads. The proposed design method successfully optimized the material quantity of the steel double-beam floor systems without the iterative analysis by simply choosing the LM index of the steel beams that can minimize objective function while satisfying the safety-related constraint conditions. In particular, under the high gravity loads, the proposed design method was superb at providing a quantity-optimized design option. Thus, the proposed optimal design method can be an alternative for designing the steel double-beam floor system.


Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


2014 ◽  
Vol 26 (4) ◽  
pp. 540-565 ◽  
Author(s):  
Hung-Che Wu

Purpose – The purpose of this paper is to identify the dimensions of service quality and examining the interrelationships among behavioral intentions, customer satisfaction, perceived value, corporate image and service quality in the gaming industry. A multi-level and hierarchical model is used as a framework to synthesize the effects of customer satisfaction, perceived value, corporate image and service quality on behavioral intentions of customers in the gaming industry. Design/methodology/approach – The data used in this study were based on a sample of 470 at a newly built casino in Macau. Data were analyzed using exploratory factor analysis and regression analysis. Findings – The findings support using a multi-level model consisting of three primary dimensions and ten sub-dimensions to conceptualize and measure perceived service quality. Perceived service quality significantly influences perceived value and corporate image, respectively. In addition, perceived value and corporate image are main determinants of customer satisfaction. Also, customer satisfaction and corporate image significantly affect behavioral intentions. Originality/value – This is the first study synthesizing behavioral intentions, customer satisfaction, perceived value, corporate image and perceived service quality in a Macau casino setting.


Sign in / Sign up

Export Citation Format

Share Document