scholarly journals Sizing by optimization of line-start synchronous motor

Author(s):  
Łukasz Knypiński ◽  
Frédéric Gillon

Purpose The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization. Design/methodology/approach The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment. Findings In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more Originality/value This proposed approach can be successfully applied to solve the design problems of LSPMSMs.

Author(s):  
Lech Nowak ◽  
Łukasz Knypiński ◽  
Cezary Jedryczka ◽  
Krzysztof Kowalski

Purpose – The purpose of this paper is to elaborate an algorithm and the computer code for the optimization of the permanent magnet synchronous motor (PMSM) including the shaft torque, the cogging torque, the total harmonic distortion factor of the back EMF and magnet volume into compromise objective function. Design/methodology/approach – The mathematical model of the device includes the magnetic field equations with the nonlinearity of the magnetic core taken into account. The numerical implementation is based on the finite element method (FEM) and time stepping procedure. The genetic algorithm has been applied for the optimization. The comprehensive computer code containing the FEM model and optimization procedures have been elaborated. Findings – Very important problem at formulating the optimization task is the choice of the functional parameters which constitute the objective and constraint functions. In the paper it has been shown that uncritical constructing the objective function could lead to irrational variants of the designed object. Authors pointed out (Knypiński et al., 2013) that connecting the shaft torque and the cogging torque simultaneously into the one compromise objective function generates ineffective operation of the optimization algorithm and often also leads to the non-optimal result. Originality/value – Authors proved that in case of multi-criterion objective function composed of terms which have very different impact on this function value (i.e. very diverse sensitivity of the objective function for these terms is observed) than the optimization process can be significantly distorted. Therefore, decomposition of the optimization process into two stages has been proposed. Some of the parameters (e.g. cogging torque) have been excluded from the first stage of the process. The two stage algorithm has been successfully implemented and tested on the example of PMSM machine.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1186 ◽  
Author(s):  
Łukasz Knypiński ◽  
Karol Pawełoszek ◽  
Yvonnick Le Menach

The paper presents the optimization method and computer software for the design of a low-power line-start permanent magnet synchronous motor (LSPMSM). The in-house-developed computer software was created with two independent modules: (a) the optimization procedure and (b) the numerical model of the motor. The optimization procedure used was a metaheuristic optimization method based on the gray wolf algorithm. Four design variables linked to the rotor structure were selected. The optimization process was performed from the rotor of a low-power induction motor (IM). The prototype of the motor (LSPMSM) was then built. The experimental measurements were performed for base the IM and optimized LSPMSM. The results of the measurements were compared for both motors. The experimental results confirmed the better performance of the designed motor in comparison to the induction motor.


2021 ◽  
Vol 39 (3A) ◽  
pp. 394-406
Author(s):  
Mustafa Y. Bdewi ◽  
Ahmed M. Mohammed ◽  
Mohammed M. Ezzaldean

In electrical vehicle applications, power density plays a significant role in improving machine performance. The main objective of this paper is to design and analyze the performance of in-wheel outer rotor permanent magnet synchronous motor (PMSM) used in electric vehicles based on a previously designed model. The key challenge is to achieve the best machine performance regarding the highest torque density and lowest torque ripple. This work also aims at reducing the machine cost by using permanent magnet (PM) material, which has less energy density than the PM used in the previously designed model. An optimization procedure is carried out to improve the generated torque, keeping the same aspects of size and volume of the selected machine. On the other hand, the other specifications of the machine are taken into consideration and are maintained within the acceptable level. According to their major impact on the machine’s performance, the most important parameters of machine designing is selected during the optimization procedure. This proposed machine is implemented and tested using the finite element software package “MagNet 7.4.1” with Visual Basic 16.0 programming language and MATLAB 9.5 Simulink for post-processing.


Author(s):  
Mohammad Tabatabaei

Purpose – The purpose of this paper is to present a two-loop approach for velocity control of a permanent magnet synchronous motor (PMSM) under mechanical uncertainties. Design/methodology/approach – The inner loop calculates the two-axis stator reference voltages through a feedback linearization method. The outer loop employs an RST control structure to compute the q-axis stator reference current. To increase the robustness of the proposed method, the RST controller parameters are adapted through a fractional order model reference adaptive system (FO-MRAS). The fractional order gradient and Lyapunov methods are utilized as adaptation mechanisms. Findings – The effect of the fractional order derivative in the load disturbance rejection, transient response speed and the robustness is verified through computer simulations. The simulation results show the effectiveness of the proposed method against the external torque and mechanical parameters uncertainties. Originality/value – The proposed FO-MRAS based on Lyapunov adaptation mechanism is proposed for the first time. Moreover, application of the FO-MRAS for velocity control of PMSM is presented for the first time.


Author(s):  
Łukasz Knypiński ◽  
Cezary Jedryczka ◽  
Andrzej Demenko

Purpose The purpose of this paper is to compare parameters and properties of optimal structures of a line-start permanent magnet synchronous motor (LSPMSM) for the cage winding of a different rotor bar shape. Design/methodology/approach The mathematical model of the considered motor includes the equation of the electromagnetic field, the electric circuit equations and equation of mechanical equilibrium. The numerical implementation is based on finite element method (FEM) and step-by-step algorithm. To improve the particle swarm optimization (PSO) algorithm convergence, the velocity equation in the classical PSO method is supplemented by an additional term. This term represents the location of the center of mass of the swarm. The modified particle swarm algorithm (PSO-MC) has been used in the optimization calculations. Findings The LSPMSM with drop type bars has better performance and synchronization parameters than motors with circular bars. It is also proved that the used modification of the classical PSO procedure ensures faster convergence for solving the problem of optimization LSPMSM. This modification is particularly useful when the field model of phenomena is used. Originality/value The authors noticed that to obtain the maximum power factor and efficiency of the LSPMSM, the designer should take into account dimensions and the placement of the magnets in the designing process. In the authors’ opinion, the equivalent circuit models can be used only at the preliminary stage of the designing of line-start permanent magnet motors.


2016 ◽  
Vol 88 (6) ◽  
pp. 740-752 ◽  
Author(s):  
Marco Evangelos Biancolini ◽  
Emiliano Costa ◽  
Ubaldo Cella ◽  
Corrado Groth ◽  
Gregor Veble ◽  
...  

Purpose The present paper aims to address the description of a numerical optimization procedure, based on mesh morphing, and its application for the improvement of the aerodynamic performance of an industrial glider which suffers of a large separation occurring in the wing–fuselage junction region at high incidence angles. Design/methodology/approach Shape variations were applied to the baseline configuration through a mesh morphing technique founded on the mathematical framework of radial basis functions (RBF). The aerodynamic solutions were obtained coupling an RANS code with the mesh morphing tool RBF Morph™. Two shape modifiers were set up to generate a parametric numerical model. An optimization procedure, based on a design of experiment sampling, was set up implementing the fully automated workflow within a high performance computing (HPC) environment. The optimal candidates maximizing the aerodynamic efficiency were identified by means of a cubic RBF response surface approach. Findings The separation was significantly reduced, modifying the local geometry of fuselage and fairing and maintaining the wing aerofoil unchanged. A relevant aerodynamic efficiency improvement was finally gained. Practical implications The developed procedure proved to be a very powerful and efficient tool in facing aerodynamic design problems. However, it might be computationally very expensive if a large number of design variables are adopted and, in those cases, the method can be suitably used only within the HPC environment. Originality/value Such an optimization study is part of an explorative set of analyses that focused on better addressing the numerical strategies to be used in the development of the EU FP7 Project RBF4AERO.


2019 ◽  
Vol 43 (4) ◽  
pp. 515-525
Author(s):  
Hongbo Qiu ◽  
Yong Zhang ◽  
Cunxiang Yang ◽  
Ran Yi

The application of an inverter is becoming more and more widespread in the surface-mounted permanent-magnet synchronous motor (SMPMSM). A large number of voltage harmonics can be generated by the inverter. The electromagnetic torque, loss, and air-gap magnetic density of the SMPMSM are affected by voltage harmonic. To analyze its influence, taking a 3 kW 1500 r/min SMPMSM as an example, a two-dimensional transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data with the calculated data. Firstly, the finite element method is used to calculate the electromagnetic field of the SMPMSM, and the performance parameters of the SMPMSM are obtained. Based on these parameters, the influence of voltage harmonic on motor performance is analyzed quantitatively. Secondly, the influence of the voltage harmonic on the air-gap magnetic field is analyzed, and the influence degree of the time harmonic on the air-gap magnetic field is determined. At the same time, torque ripple, average torque, and loss are studied when the different harmonics orders, amplitudes, and phase angles are contained in voltage, and the variation is obtained. Finally, the variation mechanism of eddy current loss is revealed. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.


Sign in / Sign up

Export Citation Format

Share Document