Yet another TOA estimation technique for IR-UWB

Author(s):  
Mustapha Djeddou ◽  
Hichem Zeher ◽  
Younes Nekachtali

Purpose – The paper aims to propose a new method for estimating the time of arrival (TOA) of ultra-wideband (UWB) signals under IEEE 802.15.4a multipath channel model. Design/methodology/approach – The proposed approach is based on a proportionality test and consists in finding out whether two autoregressive (AR) processes, modeling two frames, are proportional or not. The latter operation uses a distance to measure the proportionality between the two AR processes. Findings – The developed technique may be used in two ways, sample-by-sample or block-by-block, according to the required ranging accuracy. It is important to note that the method offers flexibility between the computational load and the needed estimation accuracy. Moreover, the proposed method uses a threshold that is derived analytically according to a preset false alarm probability. Practical implications – Simulation experiments are conducted to assess the performance of the new TOA estimation algorithm. Thereby, the comparison is done against the well-known CLEAN algorithm for a sample-by-sample based TOA estimation and against three energy detector based receiver algorithms. The obtained results highlight the effectiveness of the developed approach. Originality/value – The developed TOA estimation algorithm is completely different from other techniques in the literature, and it is based on a proportionality test between two sliding frames. These latter are modeled by two AR processes. Then a distance measure is used to check whether or not the power spectral densities are proportional.

2017 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Abdelmadjid Maali ◽  
Geneviève Baudoin ◽  
Ammar Mesloub

In this paper, we propose a novel energy detection (ED) receiver architecture combined with time-of-arrival (TOA) estimation algorithm, compliant to the IEEE 802.15.4a standard. The architecture is based on double overlapping integrators and a sliding correlator. It exploits a series of ternary preamble sequences with perfect autocorrelation property. This property ensures coding gain, which allows an accurate estimation of power delay profile (PDP). To improve TOA estimation, the interpolation of PDP samples is proposed and the architecture is validated by using an ultra-wideband signals measurements platform. These measurements are carried out in line-of-sight and non-line-of-sight multipath environments. The experimental results show that the ranging performances obtained by the proposed architecture are higher than those obtained by the conventional architecture based on a single-integrator in both LOS and NLOS environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liangliang Gong ◽  
Yang Hu ◽  
Junyao Zhang ◽  
Gaofeng Zhao

The ultra-wideband (UWB) system, which transmits information using nanosecond or even sub-nanosecond pulses, has been widely applied in precise positioning. In this paper, we investigate the problem of the time of arrival (TOA) estimation and the direction of arrival (DOA) estimation in the UWB systems with antenna array and propose a joint TOA and DOA estimation algorithm with doubled frequency sample points and extended number of clusters. Specifically, the proposed algorithm uses two antennas to receive impinging signals and utilizes the conjugate symmetry characteristic of the delay matrices to extend the sample points as well as the number of clusters. Moreover, in order to obtain TOA estimates with low computational complexity, the proposed algorithm transforms the two-dimensional (2D) spectral search to one-dimensional (1D) searches. The DOA estimates can then be achieved by using the TOA estimation results and the geometric information. Simulation results are given to testify the performance of the proposed algorithm.


2017 ◽  
Vol 68 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Marek Pola ◽  
Pavel Bezoušek

Abstract There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.


2012 ◽  
Vol 433-440 ◽  
pp. 2656-2662
Author(s):  
Xue Rong Cui ◽  
Li Zhang ◽  
Hao Zhang ◽  
T. Aaron Gulliver

This paper presents a novel location algorithm for Ultra-Wideband (UWB) wireless communication based on Time Of Arrival (TOA) measurements. The traditional algorithm and mean value algorithm are compared with the proposed high probability algorithm in a three-dimensional (3D) indoor environment. The IEEE802.15.4a channel model is considered with Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) propagation conditions, models CM1 and CM2, respectively. Performance results are presented which verify that the proposed algorithm can provide improved accuracy and robustness compared to other algorithms, particularly in poor channel environments.


2012 ◽  
Vol 433-440 ◽  
pp. 2663-2669 ◽  
Author(s):  
Xiao Long Mu ◽  
Xue Rong Cui ◽  
Hao Zhang ◽  
T. Aaron Gulliver

Chan algorithm is a closed form solution to the non-recursive equation set. This algorithm needs only a small amount of calculations but has a high degree of precision on positioning. It is valuable for academic reference. Firstly, it obtains the preliminary solution by using WLS (Weighted Least Squares) twice. Then, it uses the preliminary solution to linearise the nonlinear equation and finally makes the estimation of the position. The channel model can provide the model of indoor office environment ranging from 2 GHz to 10 GHz. Through the UWB (Ultra WideBand) positioning system of the channel model, the LOS(line-of-sight) environment can be simulated and TOA(Time-Of-Arrival) data measured by distance can also be obtained by sampling. However, small LOS errors included in the TOA data may lead to big ones in the positioning of 3D(three-dimensional) space and the precision of positioning may be undermined, when the data are directly applied to the Chan algorithm which is based on the TOA. In order to solve this issue, the TOA data obtained can be processed with MA(Moving Average) algorithm and the precision can be improved.


Author(s):  
Suyong Yeon ◽  
ChangHyun Jun ◽  
Hyunga Choi ◽  
Jaehyeon Kang ◽  
Youngmok Yun ◽  
...  

Purpose – The authors aim to propose a novel plane extraction algorithm for geometric 3D indoor mapping with range scan data. Design/methodology/approach – The proposed method utilizes a divide-and-conquer step to efficiently handle huge amounts of point clouds not in a whole group, but in forms of separate sub-groups with similar plane parameters. This method adopts robust principal component analysis to enhance estimation accuracy. Findings – Experimental results verify that the method not only shows enhanced performance in the plane extraction, but also broadens the domain of interest of the plane registration to an information-poor environment (such as simple indoor corridors), while the previous method only adequately works in an information-rich environment (such as a space with many features). Originality/value – The proposed algorithm has three advantages over the current state-of-the-art method in that it is fast, utilizes more inlier sensor data that does not become contaminated by severe sensor noise and extracts more accurate plane parameters.


Sign in / Sign up

Export Citation Format

Share Document