Motion in frequency domain for harmonic balance simulation of electrical machines

Author(s):  
Markus Wick ◽  
Sebastian Grabmaier ◽  
Matthias Juettner ◽  
Wolfgang Rucker

Purpose The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Design/methodology/approach The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Findings The three-phase symmetry reduces the simulated geometry to the sixth part of one pole. The motion transforms to a frequency offset in the angular Fourier series decomposition. The calculation overhead of the Fourier integrals is negligible. The air impedance approximation increases the accuracy and yields a convergence speed of three iterations per decade. Research limitations/implications Only linear materials and two-dimensional geometries are shown for clearness. Researchers are encouraged to adopt recent harmonic balance findings and to evaluate the performance and accuracy of both formulations for larger applications. Practical implications This method offers fast-frequency domain simulations in the optimization process of rotating machines and so an efficient way to treat time-dependent effects such as eddy-currents or voltage-driven coils. Originality/value This paper proposes a new, efficient and accurate method to simulate a rotating machine in the frequency domain.

Author(s):  
Markus Wick ◽  
Matthias Jüttner ◽  
Wolfgang M. Rucker

Purpose The high calculation effort for accurate material loss simulation prevents its observation in most magnetic devices. This paper aims at reducing this effort for time periodic applications and so for the steady state of such devices. Design/methodology/approach The vectorized Jiles-Atherton hysteresis model is chosen for the accurate material losses calculation. It is transformed in the frequency domain and coupled with a harmonic balanced finite element solver. The beneficial Jacobian matrix of the material model in the frequency domain is assembled based on Fourier transforms of the Jacobian matrix in the time domain. A three-phase transformer is simulated to verify this method and to examine the multi-harmonic coupling. Findings A fast method to calculate the linearization of non-trivial material models in the frequency domain is shown. The inter-harmonic coupling is moderate, and so, a separated harmonic balanced solver is favored. The additional calculation effort compared to a saturation material model without losses is low. The overall calculation time is much lower than a time-dependent simulation. Research limitations/implications A moderate working point is chosen, so highly saturated materials may lead to a worse coupling. A single material model is evaluated. Researchers are encouraged to evaluate the suggested method on different material models. Frequency domain approaches should be in favor for all kinds of periodic steady-state applications. Practical implications Because of the reduced calculation effort, the simulation of accurate material losses becomes reasonable. This leads to a more accurate development of magnetic devices. Originality/value This paper proposes a new efficient method to calculate complex material models like the Jiles-Atherton hysteresis and their Jacobian matrices in the frequency domain.


Author(s):  
Zakarya Djelloul Khedda ◽  
Kamel Boughrara ◽  
Frédéric Dubas ◽  
Baocheng Guo ◽  
El Hadj Ailam

Purpose Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical prediction of temperature distribution based on the formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. Therefore, this paper aims to present a two-dimensional (2D) analytical model of steady-state temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode. Design/methodology/approach The proposed model is based on the multi-layer models with the convolution theorem (i.e. Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power losses in the PMSM with the finite-element method (FEM). Findings To validate the proposed analytical model, the analytical results are compared with those obtained by thermal FEM. The comparisons show good results of the proposed model. Originality/value A new 2D analytical model based on the PDE in steady-state for full prediction of temperature distribution in the PMSM takes into account the heat transfer by conduction, convection and radiation.


J ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 22-48
Author(s):  
Léo A.J. Friedrich

This paper presents a comparison of different time- and frequency-domain solvers for the steady-state simulation of the eddy current phenomena, due to the motion of a permanent magnet array, occurring in the soft-magnetic stator core of electrical machines that exhibits nonlinear material characteristics. Three different dynamic solvers are implemented in the framework of the isogeometric analysis, namely the traditional time-stepping backward-Euler technique, the space-time Galerkin approach, and the harmonic balance method, which operates in the frequency domain. Two-dimensional electrical machine benchmarks, consisting of both slotless and slotted stator core, are considered to establish the accuracy, convergence, and computational efficiency of the presented solvers.


2016 ◽  
Vol 33 (5) ◽  
pp. 1422-1434 ◽  
Author(s):  
Herbert Martins Gomes

Purpose – The purpose of this paper is to investigate the optimum design of a quarter car passive suspension system using a particle swarm optimization algorithm in order to minimize the applied loads and vibrations. Design/methodology/approach – The road excitation is assumed as zero-mean random field and modeled by single-sided power spectral density (PSD) based on international standard ISO 8608. The variance of sprung mass displacements and variance of dynamic applied load are evaluated by PSD functions and used as cost function for the optimization. Findings – The advantages in using this methodology are emphasized by an example of the multi-objective optimization design of suspension parameters and the results are compared with values reported in the literature and other gradient based and heuristic algorithms. The paper shows that the algorithm effectively leads to reliable results for suspension parameters with low computational effort. Research limitations/implications – The procedure is applied to a quarter car passive suspension design. Practical implications – The proposed procedure implies substantial time savings due to frequency domain analysis. Social implications – The paper proposes a procedure that allows complex optimization designs to be feasible and cost effective. Originality/value – The design optimization is performed in the frequency domain taking into account standard defined road profiles PSD without the need to simulate in the time domain.


2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4400
Author(s):  
Luca Ferraris ◽  
Fausto Franchini ◽  
Emir Pošković ◽  
Marco Actis Grande ◽  
Róbert Bidulský

In recent years, innovative magnetic materials have been introduced in the field of electrical machines. In the ambit of soft magnetic materials, laminated steels guarantee good robustness and high magnetic performance but, in some high-frequency applications, can be replaced by Soft Magnetic Composite (SMC) materials. SMC materials allow us to reduce the eddy currents and to design innovative 3D magnetic circuits. In general, SMCs are characterized at room temperature, but as electrical machines operate at high temperature (around 100 °C), an investigation analysis of the temperature effect has been carried out on these materials; in particular, three SMC samples with different binder percentages and process parameters have been considered for magnetic and energetic characterization.


2019 ◽  
Vol 39 (2) ◽  
pp. 262-271
Author(s):  
Yukan Hou ◽  
Yuan Li ◽  
Yuntian Ge ◽  
Jie Zhang ◽  
Shoushan Jiang

Purpose The purpose of this paper is to present an analytical method for throughput analysis of assembly systems with complex structures during transients. Design/methodology/approach Among the existing studies on the performance evaluation of assembly systems, most focus on the system performance in steady state. Inspired by the transient analysis of serial production lines, the state transition matrix is derived considering the characteristics of merging structure in assembly systems. The system behavior during transients is described by an ergodic Markov chain, with the states being the occupancy of all buffers. The dynamic model for the throughput analysis is solved using the fixed-point theory. Findings This method can be used to predict and evaluate the throughput performance of assembly systems in both transient and steady state. By comparing the model calculation results with the simulation results, this method is proved to be accurate. Originality/value This proposed modeling method can depict the throughput performance of assembly systems in both transient and steady state, whereas most exiting methods can be used for only steady-state analysis. In addition, this method shows the potential for the analysis of complex structured assembly systems owing to the low computational complexity.


Sign in / Sign up

Export Citation Format

Share Document