scholarly journals Numerical algorithms for solving shallow water hydro-sediment-morphodynamic equations

2017 ◽  
Vol 34 (8) ◽  
pp. 2836-2861 ◽  
Author(s):  
Chunchen Xia ◽  
Zhixian Cao ◽  
Gareth Pender ◽  
Alistair Borthwick

Purpose The purpose of this paper is to present a fully conservative numerical algorithm for solving the coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes, and also to clarify the performance of a conventional algorithm, which redistributes the variable water-sediment mixture density to the source terms of the governing equations and accordingly the hyperbolic operator is rendered similar to that of the conventional shallow water equations for clear water flows. Design/methodology/approach The coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes are arranged in full conservation form, and solved by a well-balanced weighted surface depth-gradient method along with a slope-limited centred scheme. The present algorithm is verified for a spectrum of test cases, which involve complex flows with shock waves and sediment transport processes with contact discontinuities over irregular topographies. The computational results of the conventional algorithm are compared with those of the present algorithm and evaluated by available referenced data. Findings The fully conservative numerical algorithm performs satisfactorily over the spectrum of test cases, and the conventional algorithm is confirmed to work similarly well. Originality/value A fully conservative numerical algorithm, without redistributing the water-sediment mixture density, is proposed for solving the coupled shallow water hydro-sediment-morphodynamic equations. It is clarified that the conventional algorithm, involving redistribution of the water-sediment mixture density, performs similarly well. Both algorithms are equally applicable to problems encountered in computational river modelling.

2014 ◽  
Vol 24 (7) ◽  
pp. 1553-1569 ◽  
Author(s):  
H.G. Rábade ◽  
P. Vellando ◽  
F. Padilla ◽  
R. Juncosa

Purpose – A new coupled finite element model has been developed for the joint resolution of both the shallow water equations, that governs the free surface flow, and the groundwater flow equation that governs the motion of water through a porous media. The paper aims to discuss these issues. Design/methodology/approach – The model is based upon two different modules (surface and ground water) previously developed by the authors, that have been validated separately. Findings – The newly developed software allows for the assessment of the fluid flow in natural watersheds taking into account both the surface and the underground flow in the way it really takes place in nature. Originality/value – The main achievement of this work has dealt with the coupling of both models, allowing for a proper moving interface treatment that simulates the actual interaction that takes place between surface and groundwater in natural watersheds.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives multiple soliton solutions and a class of lump solutions which are rationally localized in all directions in space. Design/methodology/approach The author uses the simplified Hirota’s method and lump technique for determining multiple soliton solutions and lump solutions as well. The author shows that the developed (2+1)- and (3+1)-dimensional models are completely integrable in in the Painlené sense. Findings The paper reports new Painlevé-integrable extended equations which belong to the shallow water wave medium. Research limitations/implications The author addresses the integrability features of this model via using the Painlevé analysis. The author reports multiple soliton solutions for this equation by using the simplified Hirota’s method. Practical implications The obtained lump solutions include free parameters; some parameters are related to the translation invariance and the other parameters satisfy a non-zero determinant condition. Social implications The work presents useful algorithms for constructing new integrable equations and for the determination of lump solutions. Originality/value The paper presents an original work with newly developed integrable equations and shows useful findings of solitary waves and lump solutions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tamour Zubair ◽  
Muhammad Usman ◽  
Tiao Lu

PurposeThe purpose of this offered research is to articulate a multifaceted kind of highly unstable initial perturbation and further analyze the performance of the plasma particles for time-fractional order evaluation.Design/methodology/approachFor this purpose, the authors designed specific geometry and further interpreted it into the mathematical model using the concepts of the Vlasov Maxwell system. The suggested algorithm is based on the finite-difference and spectral estimation philosophy. The management of time and memory in generic code for computational purposes is also discussed.FindingsThe main purpose is to analyze the fractional behavior of plasma particles and also the capability of the suggested numerical algorithm. Due to initial perturbations, there are a lot of sudden variations that occurred in the formulated system. Graphical behavior shows that SR parameter produces devastation as compared to others. The variation of fractional parameter between the defend domain demonstrates the hidden pictures of plasma particles. The design scheme is efficient, convergent and has the capability to cover the better physics of the problem.Practical implicationsPlasma material is commonly used in different areas of science. Therefore, in this paper, the authors increase the capability of the mathematical plasma model with specific geometry, and further suitable numerical algorithm is suggested with detailed physical analysis of the outcomes. The authors gave a new direction to study the performance of plasma particles under the influence of LASER light.Originality/valueIn the recent era, science has produced a lot of advancements to study and analyze the physical natural process, which exist everywhere in the real word. On behalf of this current developments, it is now insufficient to study the first-order time evaluation of the plasma particles. One needs to be more precise and should move toward the bottomless state of it, that is, macroscopic and microscopic time-evaluation scales, and it is not wrong to say that there exits a huge gap, to study the time evaluation in this discussed manner. The presented study is entirely an advanced and efficient way to investigate the problem into the new directions. The capability of the proposed algorithm and model with fractional concepts can fascinate the reader to extend to the other dimensions.


2018 ◽  
Vol 90 (8) ◽  
pp. 1221-1226
Author(s):  
Sreedhar Karunakaran

Purpose The purpose of this paper is to explore various in-flight crew escape options of a prototype transport aircraft and finalize the option offering safest crew egress for different combinations of contingencies and flight conditions. Design/methodology/approach Various egress options were explored through simulation in a computational fluid dynamics (CFD) software using aircraft 3D CAD model and scalable digital mannequins. For this, certain important contingencies which best describe the extreme aircraft behaviour were identified. Crew escape options, which have least external interference in expected egress trajectory, were selected. Several test simulations representing each feasible combination of contingency, escape option and flight condition were simulated. The option which offers safe crew escape in each test case is deemed to be the safest egress option for the test aircraft. Findings Among five options explored, crew escape through forward ventral hatch provided the safest crew escape for all test cases. The selected option was validated for robustness with additional test cases modelling different anthropometric characteristics of 5th and 50th percentile pilot populations with different postures. Originality/value In-flight validation of safe crew escape option is infeasible by actual trial. Exploration of safe crew options for required number of test cases by any analytical method or by wind tunnels tests is tedious, time consuming and extremely expensive. On the other hand, exploration of safest crew option by CFD, besides being first of its kind, provides convenient option to configure, test and validate different test cases with unmatched benefits in time, cost and simplicity.


Author(s):  
Richard Thomas Gill ◽  
Steven Thornton ◽  
Michael J. Harbottle ◽  
Jonathan W. N. Smith

Electrokinetics (EK) was applied to enhance biodegradation of toluene in the low hydraulic conductivity (K) zone of a physically heterogeneous water-saturated granular porous media. The hypothesis tested was that EK transport processes, which operate independently of advection, can deliver a limiting amendment, nitrate, across a high-K–low-K boundary to stimulate bioremediation. Two types of experiment were evaluated: (1) bench-scale tests that represented the active EK system and physically heterogeneous sediment configuration; (2) microcosms that represented biodegradation in the bench-scale tests under ideal conditions. The bench-scale experiment results showed a rapid decrease in toluene concentration during the application of EK that was attributed to electroosmotic removal from low-K zones. Comparison of toluene removal rates by electroosmosis and biodegradation (microcosm) confirmed that electroosmosis was the most effective mechanism under the conditions evaluated. Overall, this work challenges the original hypothesis and indicates that, at the field scale, the most favourable conditions for biodegradation are likely to be achieved by applying EK to increase contaminant flux across the low-K–high-K boundary (out of the low-K zone) and allowing biodegradation to occur in the high-K zone either by natural attenuation or enhanced by amendment addition.Supplementary material: Supplementary material is available at https://doi.org/10.6084/m9.figshare.c.5174554


Author(s):  
Pascal Bader ◽  
Wolfgang Sanz ◽  
Johannes Peterleithner ◽  
Jakob Woisetschläger ◽  
Franz Heitmeir ◽  
...  

Flow in turbomachines is generally highly turbulent. The boundary layers, however, often exhibit laminar-to-turbulent transition. Relaminarization from turbulent to laminar flow may also occur. The state of the boundary layer is important since it strongly influences transport processes like skin friction and heat transfer. It is therefore vitally important for the designer to understand the process of laminar-to-turbulent transition and to determine the position of transition onset and the length of the transitional region. In order to better understand transition and relaminarization it is helpful to study simplified test cases first. Therefore, in this paper the flow along a flat plate is experimentally studied to investigate laminar-to-turbulent transition. Measurements were performed for the different free-stream velocities of 5 m/s and 10 m/s. Several measurement techniques were used in order to reliably detect the transitional zone: the Preston tube, hot wire anemometry, thermography and Laser Interferometric Vibrometry (LIV). The first two measurement techniques are extensively in use at the institute ITTM and by other research groups. They are therefore used as a reference for validating the LIV measurement results. An advantage of the LIV technique is that it does not need any seeding of the fluid and that it is non-intrusive. Therefore this measurement technique does not influence the flow, and it can be used in narrow flow passages since there is no blockage, in contrast to probe-based measurement techniques. Further to the measurements, computational simulations were performed with the Fluent® and CFX® codes from ANSYS®, as well as with the in-house code Linars. The Menter SST k-ω turbulence model with the γ-ReΘ transition model was used in order to test its capability to predict the laminar-to-turbulent transition.


2019 ◽  
Vol 37 (5) ◽  
pp. 1663-1682
Author(s):  
Jianming Zhang ◽  
Chuanming Ju ◽  
Baotao Chi

Purpose The purpose of this paper is to present a fast algorithm for the adaptive discretization of three-dimensional parametric curves. Design/methodology/approach The proposed algorithm computes the parametric increments of all segments to obtain the parametric coordinates of all discrete nodes. This process is recursively applied until the optimal discretization of curves is obtained. The parametric increment of a segment is inversely proportional to the number of sub-segments, which can be subdivided, and the sum of parametric increments of all segments is constant. Thus, a new expression for parametric increment of a segment can be obtained. In addition, the number of sub-segments, which a segment can be subdivided is calculated approximately, thus avoiding Gaussian integration. Findings The proposed method can use less CPU time to perform the optimal discretization of three-dimensional curves. The results of curves discretization can also meet requirements for mesh generation used in the preprocessing of numerical simulation. Originality/value Several numerical examples presented have verified the robustness and efficiency of the proposed algorithm. Compared with the conventional algorithm, the more complex the model, the more time the algorithm saves in the process of curve discretization.


2012 ◽  
Vol 140 (10) ◽  
pp. 3220-3234 ◽  
Author(s):  
Hilary Weller

Abstract The arbitrarily structured C grid, Thuburn–Ringler–Skamarock–Klemp (TRiSK), is being used in the Model for Prediction Across Scales (MPAS) and is being considered by the Met Office for their next dynamical core. However, the hexagonal C grid supports a branch of spurious Rossby modes, which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilized transport (CLUST), a blend between centered and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed that gives further discrimination between schemes than using potential enstrophy alone. Indeed, some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude–longitude grids of the sphere for various shallow-water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result, TRiSK appears to perform better than a spectral shallow-water model.


2019 ◽  
Vol 37 (4) ◽  
pp. 1261-1290 ◽  
Author(s):  
Rohit Pethe ◽  
Thomas Heuzé ◽  
Laurent Stainier

Purpose The purpose of this paper is to present a variational mesh h-adaption approach for strongly coupled thermomechanical problems. Design/methodology/approach The mesh is adapted by local subdivision controlled by an energy criterion. Thermal and thermomechanical problems are of interest here. In particular, steady and transient purely thermal problems, transient strongly coupled thermoelasticity and thermoplasticity problems are investigated. Findings Different test cases are performed to test the robustness of the algorithm for the problems listed above. It is found that a better cost-effectiveness can be obtained with that approach compared to a uniform refining procedure. Because the algorithm is based on a set of tolerance parameters, parametric analyses and a study of their respective influence on the mesh adaption are carried out. This detailed analysis is performed on unidimensional problems, and a final example is provided in two dimensions. Originality/value This work presents an original approach for independent h-adaption of a mechanical and a thermal mesh in strongly coupled problems, based on an incremental variational formulation. The approach does not rely on (or attempt to provide) error estimation in the classical sense. It could merely be considered to provide an error indicator. Instead, it provides a practical methodology to adapt the mesh on the basis of the variational structure of the underlying mathematical problem.


Sign in / Sign up

Export Citation Format

Share Document