scholarly journals Building information modelling to support maintenance management of healthcare built assets

Facilities ◽  
2019 ◽  
Vol 37 (7/8) ◽  
pp. 415-434 ◽  
Author(s):  
Nadeeshani Wanigarathna ◽  
Keith Jones ◽  
Adrian Bell ◽  
Georgios Kapogiannis

Purpose This paper aims to investigate how digital capabilities associated with building information modelling (BIM) can integrate a wide range of information to improve built asset management (BAM) decision-making during the in-use phase of hospital buildings. Design/methodology/approach A comprehensive document analysis and a participatory case study was undertaken with a regional NHS hospital to review the type of information that can be used to better inform BAM decision-making to develop a conceptual framework to improve information use during the health-care BAM process, test how the conceptual framework can be applied within a BAM division of a health-care organisation and develop a cloud-based BIM application. Findings BIM has the potential to facilitate better informed BAM decision-making by integrating a wide range of information related to the physical condition of built assets, resources available for BAM and the built asset’s contribution to health-care provision within an organisation. However, interdepartmental information sharing requires a significant level of time and cost investment and changes to information gathering and storing practices within the whole organisation. Originality/value This research demonstrated that the implementation of BIM during the in-use phase of hospital buildings is different to that in the design and construction phases. At the in-use phase, BIM needs to integrate and communicate information within and between the estates, facilities division and other departments of the organisation. This poses a significant change management task for the organisation’s information management systems. Thus, a strategically driven top-down organisational approach is needed to implement BIM for the in-use phase of hospital buildings.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zul-Atfi Bin Ismail

PurposeThe contemporary practice of conventional maintenance for industrialised building system (IBS) constructions suffers from poor service delivery and defect repetition. A key problem impeding the widespread adoption of emerging technologies is the lack of competent contractors to support the effectiveness of the technology implemented in conventional methods and to ensure returns on investment. The shortcomings of conventional methods are assessed from the perspective of IBS buildings. This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes.Design/methodology/approachThis paper describes the establishment of key problem areas, the elements involved in implementing good practice and the requirements for integrating maintenance management processes and information databases in the maintenance management system.FindingsConventional methods have little emphasis on defect diagnosis tools. They also enhance inadequate strategic decision-making in the analysis of information when attempting to improve the maintenance project outcomes for IBS construction. The characteristics identified in a case study of IBS buildings are presented and analysed.Originality/valueThe conclusions and recommendations drawn from the analysis of the IBS case study are discussed, synthesised and deliberated upon. The approach presented in this paper integrates various aspects of building information modelling technology to facilitate improved execution of IBS maintenance activities.


2017 ◽  
Vol 24 (4) ◽  
pp. 696-714 ◽  
Author(s):  
Ali GhaffarianHoseini ◽  
Dat Tien Doan ◽  
Nicola Naismith ◽  
John Tookey ◽  
Amirhosein GhaffarianHoseini

Purpose Green Star is becoming a broadly accepted mark of design quality and environmental sustainability. Compared to other green tools, Green Star is considered as one of main streams green assessment tools, which cover almost sustainable criteria. Simultaneously, building information modelling (BIM) has also been introduced into the industry. BIM is expected to aid designers to shift the construction industry towards more environmentally and economically sustainable construction practice. Whilst the aspirations of Green Star rating and BIM implementation are broadly aligned, in the context of New Zealand this has led to some disconnects in design strategy and process. The purpose of this paper is to improve the practicality of BIM implementations for delivering Green Star certification in New Zealand. Design/methodology/approach The extensive literature review is conducted through a series of incremental steps. A conceptual framework focussing on the relationship between benefits and challenges of BIM and Green Star is then developed. Findings BIM supports practitioners to achieve the majority of Green Star criteria (75 per cent). Energy efficiency criterion is the key factor affecting the assessment process of Green Star and National Australian Built Environment Rating System in New Zealand. Research questions about lessening the challenges which can be encountered during the BIM and Green Star implementation are developed. Research limitations/implications This paper is limited to a conceptual research. Further empirical research should be conducted to validate and modify the conceptual framework and the propositions presented in this paper to provide an initial insight into BIM and Green Star connectivity within the context of New Zealand. Originality/value This paper provided a clear picture for investors, developers, practitioners about benefits and challenges of BIM and Green Star implementation. The outcomes are anticipated to deliver visions for shifting the country further towards development of sustainable future cities.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mostafa Babaeian Jelodar ◽  
Suzanne Wilkinson ◽  
Roohollah Kalatehjari ◽  
Yang Zou

PurposeMany applications of Building Information modelling (BIM) are already integrated into project management processes. However, the construction industry is suffering from poor decision-making, especially during procurement where fundamental decisions are made. To make the best decisions at earlier project stages, such as design, large amount of information needs to be processed and classified. Therefore, this study seeks to create a Decision Support System (DSS) for construction procurement through the application of existing informatics infrastructure and BIM applications.Design/methodology/approachLiterature review expert interviews and case studies with complex procurement considerations were used to identify and validate attributes and criterions for procurement decision-making. Accordingly, Multi-Attribute Utility Theory (MAUT) methodology was used and mathematical models were driven as the foundation for a DSS.FindingsFive major criterions of time, cost, relationship quality, sustainability and quality of work performed was identified for complex construction procurement decision-making. Accordingly, a DSS structure and mathematical model was proposed. Based on this a model architecture was developed for the integration of the DSS into Autodesk Revit as a BIM platform, and assist in pre-contract decision-making.Practical implicationsThe results can be used in pre-contract selection processes via currently used BIM applications. The model architecture can integrate DSS outputs to nD models, cloud systems and potentially virtual reality facilities to facilitate better construction operations and smarter more automated processes.Originality/valueThis study formulates and captures complex and unstructured information on construction procurement into a practical DSS model. The study provides a link to integrate solutions with already available platforms and technologies. The study also introduces the concept of designing for procurement; which can be expanded to other challenging decisions during construction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayman Ahmed Ezzat Othman ◽  
Fatma Othman Alamoudy

Purpose This paper aims to develop a framework for optimising building performance through the integration between risk management (RM) and building information modelling (BIM) during the design process. Design/methodology/approach To achieve this aim, a research strategy consisting of literature review, case studies and survey questionnaire is designed to accomplish four objectives. First, to examine the concepts of design process, building performance, RM and BIM; second, to present three case studies to explain the role of using RM and BIM capabilities towards optimising building performance; third, to investigate the perception and application of architectural design firms in Egypt towards the role of RM and BIM for enhancing building performance during the design process; and finally, to develop a framework integrating RM and BIM during the design process as an approach for optimising building performance. Findings Through literature review, the research identified 18 risks that hamper optimising building performance during the design process. In addition, 11 building performance values and 20 BIM technologies were defined. Results of data analysis showed that “Design budget overrun”, “Lack of considering life cycle cost” and “Inefficient use of the design time” were ranked the highest risks that affect the optimisation of building performance. Respondents ranked “Risk avoid” or “Risk transfer” as the most risk responses adopted in the Egyptian context. In addition, “BIM As Built” was ranked the highest BIM technology used for overcoming risks during the design process. These findings necessitated taking action towards developing a framework to optimising building performance. Originality/value The research identified the risks that affect optimising building performance during the design process. It focuses on improving the design process through using the capabilities of BIM technologies towards overcoming these risks during the design process. The proposed framework which integrates RM and BIM represents a synthesis that is novel and creative in thought and adds value to the knowledge in a manner that has not previously occurred.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ifeoluwa Benjamin Oluleye ◽  
Abiodun Kolawole Oyetunji ◽  
Michael Ayodele Olukolajo ◽  
Daniel W.M. Chan

Purpose Building information modelling (BIM) is a novel technological advancement in the built environment. Despite the potentials of BIM, its adoption and implementation are undermined in facility management (FM) operations. This might be because of limited information on the critical success factors (CSFs) that can enhance its adoption. The study aims to integrate building information modelling to improve facility management operation by adopting fuzzy synthetic approach for evaluating the critical success factors. Design/methodology/approach Data for the study were sourced from practising and registered facility managers within Lagos metropolis, Nigeria. The data collected were analysed using a combination of methods which include mean item score, factor analysis and fuzzy synthetic evaluation (FSE). Findings The factor analysis results showed that six underlying groups of CSFs would enhance the effective adoption of BIM in facility operations. The FSE results showed that out of the six groups, the three topmost important CSF grouping (CSFG) in the decision rule would enhance the effectiveness of BIM adoption for FM operations. Practical implications The result of this study provides a credible road map for facility managers, policymakers and other stakeholders in FM operations on the CSFs and CSFG required for the adoption of BIM. Originality/value Previous studies that aimed at integrating BIM into FM are limited. Hence, this study provides a broad perspective on the CSF required for BIM adoption and implementation in FM operations using the FSE approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Apeesada Sompolgrunk ◽  
Saeed Banihashemi ◽  
Saeed Reza Mohandes

Purpose The purpose of this study is to identify and analyse the key measurable returning factors, value drivers and strategic benefits associated with building information modelling (BIM) return on investment (ROI). The findings of this study provide researchers and practitioners with up-to-date information in formulating appropriate strategies to quantify the monetary value of BIM. The suggested research agenda provided would also advance what is presently a limited body of knowledge relating to the evaluation of BIM ROI. Design/methodology/approach To fill the identified gap, this study develops a comprehensive systematic review of mainstream studies on factors affecting BIM ROI published from 2000 to 2020. A total of 23 academic records from different sources such as journals, conference proceedings, dissertation and PhD theses were identified and thoroughly reviewed. Findings The reported BIM ROI ranged greatly from −83.3% to 39,900%. A total of 5 returning factors, namely, schedule reduction and compliance, productivity improvement, request for information reduction, rework reduction and change orders reduction were identified as the most commonly reported factors that influence BIM ROI. Four quantification techniques including general assumptions-based theoretical model, perceived BIM ROI based on survey, factors affecting BIM ROI with no reported ROI and quantified BIM ROI based on a case study were observed and pointed out in the review, together with their limitations. Finally, three major gaps were raised as the lack of consideration on the likelihood of BIM assisting in a construction project, intangible returning factors influencing BIM-based projects and industry standards in benchmarking BIM ROI. Practical implications The outcomes of this study would assist practitioners by providing the current evaluation techniques that address the limitations with BIM investment and present issues relating to the economic evaluation of BIM in the construction industry. It is also expected that presenting a deeper and wider perspective of the research work performed until now will direct a more focussed approach on productivity improvement efforts in the construction industry. Originality/value This study identifies and analyses the key measurable returning factors, value drivers and strategic benefits associated with BIM ROI on an industry scale rather than a particular organisation or a project scale.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Martin Evans ◽  
Peter Farrell

PurposeThe construction industry encounters substantial challenges in its evolution towards sustainable development and in the adoption of building information modelling (BIM) technology and lean construction (LC) practices on construction mega-projects. This research aims to investigate the critical barriers encountered by key construction stakeholders in their efforts to integrate BIM and LC in the construction mega-projects.Design/methodology/approachA two-round Delphi survey shaped the foundation of aggregating consensus between an expert panel that examined a set of 28 barriers resulting from a detailed analysis of the extant literature. Descriptive and inferential statistical tests were exploited for data analysis, and interrater agreement analysis was used to elaborated and validate results.FindingsThe research concluded that the key barriers by descending order of significance are lack of mandatory BIM and LC industry standards and regulations by the government, resistance of the industry to change from traditional practices to LeanBIM, high cost of software licenses and training and running of BIM.Originality/valueThe research findings and the proposed mitigation strategy will enhance the application of BIM and LC practices in construction mega-projects and allow project key stakeholders to place emphasis on tackling the crucial challenges and barriers identified in this research.


2019 ◽  
Vol 19 (3) ◽  
pp. 298-320 ◽  
Author(s):  
Maria Christina Georgiadou

Purpose This paper aims to present a state-of-the-art review of building information modelling (BIM) in the UK construction practice. In particular, the aim is to examine the scope, value and practical implications of BIM implementation in residential projects by evaluating practitioners’ perspectives working in the Greater London Area (GLA). Design/methodology/approach The paper outlines the general status quo of BIM adoption and maturity in the UK. It then discusses the feasibility of BIM use in residential projects drawing on an online survey and complementary semi-structured interviews with building professionals. The cross-comparison between the evidence base and literature review uncovers the specific benefits, challenges and risks to BIM implementation in the house building sector. Findings BIM is an evaluation methodology that helps the management of digital information throughout the project lifecycle. At a conceptual level, a BIM-enabled project offers quality assurance and on-time delivery, collaboration and communication improvement, visual representation and clash detection and whole lifecycle value. The findings, however, suggest that the most frequently reported benefits are related to collaboration and the blend of product (software) and process innovation, whilst lifecycle thinking and waste reduction are often overlooked. At present, there is widespread awareness on BIM but with a financial barrier to invest in developing digital capabilities, particularly for small- and medium-sized enterprises. Practical implications The paper concludes with a critical commentary on the lack of strategic leadership in both the supply and demand side. The role of policy to streamline commercial drivers for whole lifecycle costing in procurement is endorsed to drive the change management required to address the short-term mind-set of senior management and wider fragmentation of the construction industry, also serving as a research question for further research and development in the field. Originality/value There are relatively few studies evaluating BIM perspectives in UK residential projects. This paper explores the feasibility and “real-life” value of BIM in housing practice, drawing on views and experiences of building professionals in GLA. In particular, the research findings provide an evidence base evaluating the extent to which the house building industry has the expertise and capability to operate in a BIM environment and to comply with the Level 2 mandate and explore which of the generic barriers and drivers of BIM-readiness are more relevant to the design and construction of housing projects.


Sign in / Sign up

Export Citation Format

Share Document