Unsteady squeezing second order of nanofluid flow through an infinite channel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Taimoor Salahuddin ◽  
Ali Haider ◽  
Metib Alghamdi

Purpose The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat generation and variable viscosity. The leading non-linear energy and momentum PDEs are converted into non-linear ODEs by using suitable analogous approach. Design/methodology/approach Then the acquired non-linear problem is numerically calculated by using Bvp4c (built in) technique in MATLAB. Findings The influence of certain appropriate physical parameters, namely, squeezed number, fluid parameter, Brownian motion, heat generation, thermophoresis parameter, Prandtl number, Schmidt number and variable viscosity parameter on temperature, velocity and concentration distributions are studied and deliberated in detail. Numerical calculations of Sherwood number, Nusselt number and skin friction for distinct estimations of appearing parameters are analyzed through graphs and tables. It is examined that for large values of squeezing parameter, the velocity profile increases, whereas opposite behavior is noticed for large values of variable viscosity and fluid parameter. Moreover, temperature profile increases for large values of Brownian motion, thermophoresis parameter and squeezed parameter and decreases by increases Prandtl number and heat generation. Moreover, concentration profile increases for large values of Brownian motion parameter and decreases by increases thermophoresis parameter, squeezed parameter and Schmidt number. Originality/value No one has ever taken infinite squeezed channel having second grade fluid model with variable viscosity and heat generation.

2017 ◽  
Vol 27 (6) ◽  
pp. 1215-1230 ◽  
Author(s):  
Noreen Sher Akbar ◽  
O. Anwar Beg ◽  
Z.H. Khan

Purpose Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials’ manufacturing. The efficient production of such materials combines many physical phenomena including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To improve the understanding of complex inter-disciplinary transport phenomena in such systems, mathematical models provide a robust approach. Motivated by this, this study aims to develop a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. Design/methodology/approach This study developed a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. A uniform constant-strength magnetic field is applied transversely to the stretching flow plane. The Buongiorno nanofluid model is used to represent thermophoretic and Brownian motion effects. A non-Fourier (Cattaneo–Christov) model is used to simulate thermal conduction effects, of which the Fourier model is a special case when thermal relaxation effects are neglected. Findings The governing conservation equations are rendered dimensionless with suitable scaling transformations. The emerging nonlinear boundary value problem is solved with a fourth-order Runge–Kutta algorithm and also shooting quadrature. Validation is achieved with earlier non-magnetic and forced convection flow studies. The influence of key thermophysical parameters, e.g. Hartmann magnetic number, thermal Grashof number, thermal relaxation time parameter, Schmidt number, thermophoresis parameter, Prandtl number and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood number and nanoparticle concentration distributions, is investigated. Originality/value A strong elevation in temperature accompanies an increase in Brownian motion parameter, whereas increasing magnetic parameter is found to reduce heat transfer rate at the wall (Nusselt number). Nanoparticle volume fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt number and thermophoresis parameter, whereas it is elevated significantly with greater Brownian motion parameter. Higher temperatures are achieved with greater thermal relaxation time values, i.e. the non-Fourier model predicts greater values for temperature than the classical Fourier model.


2019 ◽  
Vol 29 (8) ◽  
pp. 2948-2963 ◽  
Author(s):  
Muhammad Waqas ◽  
Muhammad Mudassar Gulzar ◽  
Zeeshan Asghar ◽  
Z. Ali ◽  
Waqar Azeem Khan ◽  
...  

Purpose The purpose of this study is to elaborate mixed convection impact in stratified nanofluid flow by convectively heated moving surface. Rheological relations of second-grade fluid are used for formulation. Magnetic field, heat absorption/generation and convective conditions are considered for modeling. Design/methodology/approach Convergent solutions are achieved using homotopy procedure. Findings The authors found opposing behavior for radiation and thermal stratification variables against thermal field. Originality/value No such analysis has yet been reported.


2020 ◽  
Vol 17 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Taseer Muhammad

PurposeThe purpose of this article is to analyze the magnetohydrodynamic viscous liquid flow with heat absorption/generation. Flow is induced by an unsteady stretching curved surface. A time-dependent magnetic field is utilized.Design/methodology/approachThe resulting nonlinear system is solved through shooting method.FindingsAn increment in the values of curvature A and unsteadiness parameters correspond to higher velocity, temperature and concentration fields. There is a reduction in the temperature and related layer via Prandtl number. Skin friction is increasing factor of magnetic number. Local Nusselt and Sherwood numbers are lower for greater magnetic number.Originality/valueTo the best of author's knowledge, no such consideration has been given in the literature yet.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2297
Author(s):  
Fuzhang Wang ◽  
Muhammad Imran Asjad ◽  
Saif Ur Rehman ◽  
Bagh Ali ◽  
Sajjad Hussain ◽  
...  

Bioconvection phenomena for MHD Williamson nanofluid flow over an extending sheet of irregular thickness are investigated theoretically, and non-uniform viscosity and thermal conductivity depending on temperature are taken into account. The magnetic field of uniform strength creates a magnetohydrodynamics effect. The basic formulation of the model developed in partial differential equations which are later transmuted into ordinary differential equations by employing similarity variables. To elucidate the influences of controlling parameters on dependent quantities of physical significance, a computational procedure based on the Runge–Kutta method along shooting technique is coded in MATLAB platform. This is a widely used procedure for the solution of such problems because it is efficient with fifth-order accuracy and cost-effectiveness. The enumeration of the results reveals that Williamson fluid parameter λ, variable viscosity parameter Λμ and wall thickness parameter ς impart reciprocally decreasing effect on fluid velocity whereas these parameters directly enhance the fluid temperature. The fluid temperature is also improved with Brownian motion parameter Nb and thermophoresis parameter Nt. The boosted value of Brownian motion Nb and Lewis number Le reduce the concentration of nanoparticles. The higher inputs of Peclet number Pe and bioconvection Lewis number Lb decline the bioconvection distribution. The velocity of non-Newtonian (Williamson nanofluid) is less than the viscous nanofluid but temperature behaves oppositely.


Author(s):  
Waqar Azeem Khan ◽  
Muhammad Waqas ◽  
Mehboob Ali ◽  
F. Sultan ◽  
M. Shahzad ◽  
...  

Purpose This paper aims to develop a mathematical model featuring Brownian motion and thermophoresis. The idea of curved stretching subjected to time-dependent non-Newtonian (Sisko) fluid flow is introduced. Design/methodology/approach Shooting scheme is implemented to compute nonlinear systems. Findings Velocity profile of Sisko magnetonanofluid enhances for augmented values of curvature parameter. Originality/value To the best of the authors’ knowledge, no such analysis has yet been reported.


2019 ◽  
Vol 16 (1) ◽  
pp. 208-224 ◽  
Author(s):  
Himanshu Upreti ◽  
Manoj Kumar

Purpose The purpose of this paper is to examine the effect of non-linear thermal radiation, Joule heating and viscous dissipation on the mixed convection boundary layer flow of MHD nanofluid flow over a thin moving needle. Design/methodology/approach The equations directing the flow are reduced into ODEs by implementing similarity transformation. The Runge–Kutta–Fehlberg method with a shooting technique was implemented. Findings Numerical outcomes for the coefficient of skin friction and the rate of heat transfer are tabulated and discussed. Also, the boundary layer thicknesses for flow and temperature fields are addressed with the aid of graphs. Originality/value Till now, no numerical study investigated the combined influence of Joule heating, non-linear thermal radiation and viscous dissipation on the mixed convective MHD flow of silver-water nanofluid flow past a thin moving needle. The numerical results for existing work are new and their novelty verified by comparing them with the work published earlier.


Sign in / Sign up

Export Citation Format

Share Document