scholarly journals Casing-groove optimisation for stall margin in a transonic compressor rotor

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahmad Fikri Mustaffa ◽  
Vasudevan Kanjirakkad

Purpose This paper aims to understand the aerodynamic blockage related to near casing flow in a transonic axial compressor using numerical simulations and to design an optimum casing groove for stall margin improvement using a surrogate optimisation technique. Design/methodology/approach A blockage parameter (Ψ) is introduced to quantify blockage across the blade domain. A surrogate optimisation technique is then used to find the optimum casing groove design that minimises blockage at an axial location where the blockage is maximum at near stall conditions. Findings An optimised casing groove that improves the stall margin by about 1% can be found through optimisation of the blockage parameter (Ψ). Originality/value Optimising for stall margin is rather lengthy and computationally expensive, as the stall margin of a compressor will only be known once a complete compressor map is constructed. This study shows that the cost of the optimisation can be reduced by using a suitably defined blockage parameter as the optimising parameter.


Author(s):  
HaoGuang Zhang ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu ◽  
Wei Wang ◽  
...  

For compressor blade tip stall, one effective way of extending stable operating range is with the application of circumferential grooved casing treatment and its validity was proved by a lot of experimental and numerical investigations. The emphases of most circumferential grooved investigations are focused on the influence of groove depth and groove number on compressor stability, and there is few investigations dealt with the center offset degree of circumferential grooves casing treatment. Hence, an axial compressor rotor with casing treatment (CT) was investigated with experimental and numerical methods to explore the effect of center offset degree on compressor stability and performance. In the work reported here, The center offset degree is defined as the ratio of the central difference between rotor tip axial chord and CT to the axial chord length of rotor tip. When the center of CT is located within the upstream direction of the center of rotor tip axial chord, the value of center offset degree is positive. The experimental and numerical results show that stall margin improvement gained with CT is reduced as the value of center offset degree varies from 0 to 0.33 or −0.33, and the CT with −0.33 center offset degree achieves the lowest value of stall margin improvement at 53% and 73% design rotational speed. The detailed analysis of the flow-field in compressor tip indicates that there is not positive effect made by grooves on leading edge of rotor blade tip when the value of center offset degree is −0.33. As the mass flow of compressor reduces further, tip clearance leakage flow results in the outlet blockage due to the absence of the positive action of grooves near blade tip tail when the value of center offset degree is 0.33. Blockage does not appear in rotor tip passage owing to utilizing the function of all grooves with CT of 0 center offset degree.



2021 ◽  
Vol 5 ◽  
pp. 79-89
Author(s):  
Ahmad Fikri Mustaffa ◽  
Vasudevan Kanjirakkad

The stall margin of tip-critical axial compressors can be improved by using circumferential casing grooves. From previous studies, in the literature, the stall margin improvement due to the casing grooves can be attributed to the reduction of the near casing blockage. The pressure rise across the compressor as the compressor is throttled intensifies the tip leakage flow. This results in a stronger tip leakage vortex that is thought to be the main source of the blockage. In this paper, the near casing blockage due to the tip region aerodynamics in a low-speed axial compressor rotor is numerically studied and quantified using a mass flow-based blockage parameter. The peak blockage location at the last stable operating point for a rotor with smooth casing is found to be at about 10% of the tip chord aft of the tip leading edge. Based on this information, an optimised single casing groove design that minimises the peak blockage is found using a surrogate-based optimisation approach. The implementation of the optimised groove is shown to produce a stall margin improvement of about 5%.





Author(s):  
N. A. Cumpsty

Results are presented and discussed from an axial compressor rotor operated with an axial skewed slot casing treatment over part of the circumference. The compressor was one for which stall was initiated in the tip region and for this type there is some potential for stall margin improvement with lower loss using this. The main significance of the experiments is, however, the possibility of looking at aspects of stall inception. Normally stall inception is a brief transient with an unknown start time and is difficult to study but with the partial casing treatment it was possible to make the untreated section operate continuously in such a way that it underwent the processes normally leading to stall. For a tip stalling rotor the experiments identify the annulus boundary layer as the crucial region of the flow and spillage of the tip-clearance flow forward of the blades as a process leading to the rapid build up of blockage prior to instability and stall.



Author(s):  
Daniel Franke ◽  
Daniel Möller ◽  
Maximilian Jüngst ◽  
Heinz-Peter Schiffer ◽  
Thomas Giersch ◽  
...  

This study investigates the aerodynamic and aeroelastic characteristics of a transonic axial compressor, focusing on blade count reduced rotor behavior. The analysis is based on experiments, conducted at the Transonic Compressor Darmstadt test rig at Technical University of Darmstadt and compulsory simulations. In order to obtain measurement data for the detailed aerodynamic and aeroelastic investigation, extensive steady and unsteady instrumentation was applied. Besides transient measurements at the stability limit to determine the operating range and limiting phenomena, performance measurements were performed, presenting promising results with respect to the capabilities of blade count reduced rotors. Close to the stability limit, aerodynamic disturbances like radial vortices were detected for both rotors, varying in size, count, speed and trajectory. Comparing the rotor configurations results in different stability limits along the compressor map as well as varying aeromechanical behavior. Those effects can partially be traced to the variation in blade pitch and associated aerodynamics.



Author(s):  
N. K. W. Lee ◽  
E. M. Greitzer

An experimental investigation was carried out to examine the effects on stall margin of flow injection into, and flow removal out of, the endwall region of an axial compressor blade row. A primary objective of the investigation was clarification of the mechanism by which casing treatment (which involves both removal and injection) suppresses stall in turbomachines. To simulate the relative motion between blade and treatment, the injection and removal took place through a slotted hub rotating beneath a cantilevered stator row. Overall performance data and detailed (time-averaged) flowfield measurements were obtained. Flow injection and removal both increased the stalling pressure rise, but neither was as effective as the wall treatment. Removal of high blockage flow is thus not the sole reason for the observed stall margin improvement in casing or hub treatment, as injection can also contribute significantly to stall suppression. The results also indicate that the increase in stall pressure rise with injection is linked to the streamwise momentum of the injected flow, and it is suggested that this should be the focus of further studies.



2018 ◽  
Vol 90 (5) ◽  
pp. 858-868 ◽  
Author(s):  
Muhammad Taimoor ◽  
Li Aijun ◽  
Rooh ul Amin ◽  
Hongshi Lu

Purpose The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft. Design/methodology/approach In this paper, the LQR-based Luenberger observer is deliberated for autonomous level flight of unmanned aerial vehicle (UAV) which has been attained productively. Various modes like phugoid and roll modes are exploited for controlling the rates of UAV. The Luenberger observer is exploited for estimation of the mysterious states of the system. The rates of roll, yaw and pitch are used as an input to the observer, while the remaining states such as velocities and angles have been anticipated. The main advantage of using Luenberger observer was to reduce the cost of the system which has been achieved lucratively. The Luenberger observer proposes sturdiness at the rate of completion to conquest over the turmoil and insecurities to overcome the privileged recital. The FlightGear simulator is exploited for the endorsement of the recital of the Luenberger observer-based autopilot. The level flight has been subjugated lucratively and has been legitimated by exploiting the FlightGear simulator. The authenticated and the validated results are offered in this paper. Microsoft Visual Studio has been engaged as a medium between the MATLAB and FlightGear Simulator. Findings The suggested observer based on LQR ensures the lucrative approximation of the unknown states of the system as well as the successful level flight of the system. The Luenberger observer is used for approximation of states while LQR is used as controller. Originality/value In this research work, not only the estimation of unknown states of both longitudinal and lateral model is made but also the level flight is achieved by using those estimated states and the autopilot is validated by using the FlightGear, while in most of the research work only the estimation is made of only longitudinal or lateral model.



2019 ◽  
Vol 34 (8) ◽  
pp. 1850-1865
Author(s):  
Juliana Ventura Amaral ◽  
Reinaldo Guerreiro

Purpose Empirical studies have found that cost-based pricing remains dominant in pricing practice and suggest that practice conflicts with marketing theory, which recommends value-based prices. However, empirical studies have yet to examine whether cost-plus formulas represent the pricing approach or essence. Design/methodology/approach This study aims to address the factors that explain price setting whereby the cost-plus formula is not just the pricing approach but also the pricing essence. This examination is grounded in a survey conducted on 380 Brazilian industrial companies. Findings The results show that, for price-makers, the cost-based pricing essence is positively associated with four factors (two obstacles to deploying value-based pricing, company size and differentiation), but it is negatively related to one factor (premium pricing strategy). For price-takers, the cost-based pricing essence is positively associated with four factors (two obstacles to deploying value-based pricing, coercive isomorphism and use of full costs), but it is negatively related to five factors (one obstacle to deploying value-based pricing, company size, competitors’ ability to copy, normative isomorphism and experience). Originality/value The key contribution of this paper is demonstrating that cost-plus formulas do not go against the incorporation of competitors and value information. This study reveals that it is possible to set prices based on either value or competitors’ prices while simultaneously preserving the simplicity of the cost-plus formulas. Via the margin, firms may connect costs to information about competition and value. The authors also demonstrate the drawbacks of not segregating companies into price-makers and price-takers and an excessive focus on the pricing approach at the expense of pricing essence.



Author(s):  
Wei Zhu ◽  
Songtao Wang ◽  
Longxin Zhang ◽  
Jun Ding ◽  
Zhongqi Wang

This study aimed to enhance the understanding of flow phenomena in low-reaction aspirated compressors. Three-dimensional, multi-passage steady and unsteady numerical simulations are performed to investigate the performance sensitivity to tip clearance variation on the first-stage rotor of a multistage low-reaction aspirated compressor. Three kinds of tip clearance sizes including 1.0τ, 2.0τ and 3.0τ are modeled, in which 1.0τ corresponds to the designed tip clearance size of 0.2 mm. The steady numerical simulations show that the overall performance of the rotor moves toward lower mass flow rate when the tip clearance size is increased. Moreover, energy losses, efficiency reduction and stall margin decrease are also observed with increasing tip clearance size. This can be mostly attributed to the damaging impact of intense tip clearance flow. For unsteady simulation, the result shows periodical oscillation of the tip leakage vortex and a “two-passage periodic structure” in the tip region at the near-stall point. The occurrence of the periodical oscillation is due to the severe interaction between the tip clearance flow and the shock wave. However, the rotor operating state is still stable at this working point because a dynamic balance is established between the tip clearance flow and incoming flow.



Sign in / Sign up

Export Citation Format

Share Document