The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics

2019 ◽  
Vol 32 (2) ◽  
pp. 208-217
Author(s):  
Selin Hanife Eryuruk

Purpose The liquid water and water vapour transfer properties of fabrics play an important and decisive role in determining thermal comfort properties of clothing systems. The purpose of this paper is to analyse the effects of fabric composition (98 percent cotton–2 percent elastane and 100 percent cotton) and finishing treatments (rigid, resin, bleaching and softening) on the wicking, drying and water vapour permeability (WVP) properties of denim fabrics. Design/methodology/approach The research design for this study consists of experimental study. Two fabric compositions (98 percent cotton–2 percent elastane and 100 percent cotton) and four finishing treatments (rigid, resin, bleaching and softening) were evaluated to see the effects of elastane and finishing treatments on wicking, drying and WVP properties of woven denim fabrics. Results were analysed statistically. Findings Experimental results showed that the transfer wicking, drying and WVP values of denim fabrics were significantly influenced by fabric weight, fibre composition and finishing treatments. Practical implications The wicking ability of sweat from the skin to the outer environment of a skin contact fabric layer is the primary requirement. Originality/value As a result of the literature review, it was seen that there are some studies in the literature about comfort properties of denim fabrics, but there is no study concerning the water vapour transmission, wicking and drying properties of denim fabrics.

2016 ◽  
Vol 28 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Govindan Karthikeyan ◽  
Govind Nalankilli ◽  
O L Shanmugasundaram ◽  
Chidambaram Prakash

Purpose – The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns. Design/methodology/approach – Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures. Findings – An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo. Research limitations/implications – It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up. Originality/value – This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.


2018 ◽  
Vol 69 (03) ◽  
pp. 177-182
Author(s):  
ZAHRA QURBAT ◽  
MANGAT ASIF ELAHI ◽  
FRAZ AHMAD ◽  
HUSSAIN SAJID ◽  
ABBAS MUDASSAR ◽  
...  

Air and moisture transport properties of plain woven fabric made from 20sNec cotton in warp and 20sNec pure yarns of tencel, modal, pro-modal, bamboo, polyester and cotton yarn inweft direction are studied. Major characteristics added for this study include water vapour permeability, air permeability, wettingtime and wicking speed. In comparison of six different samples of variously composed materials in weft direction, the air permeability of tencel was minimum and polyester was maximum, whereas the reverse results were observed for both the samples in case of water vapour permeability. Among the blends with cotton, thermal conductivity of bamboo and thermal absorptivity of polyester was found maximum whereas the minimum thermal resistance was observed for pro modal yarn in weft. Similar pattern was observed in spreading speed and wetting time of the polyester when observed from either side top or bottom. Air and moisture comfort properties of bamboo and pro modal, having nearly similar values are suggested to be used in garments used for golf players


2016 ◽  
Vol 28 (3) ◽  
pp. 328-339 ◽  
Author(s):  
Rajesh Mishra ◽  
Arumugam Veerakumar ◽  
Jiri Militky

Purpose – The purpose of this paper is to investigate effect of material properties in 3D knitted fabrics on thermo-physiological comfort. Design/methodology/approach – In the present study six different spacer fabrics were developed. Among these six fabrics, it was classified into two groups for convenient analysis of results, the first group has been developed using polyester/polypropylene blend with three different proportion and second group with polyester/polypropylene/lycra blend having another three different composition. As a spacer yarn, three different types of 88 dtex polyester monofilament yarn and polyester multifilament yarns (167 dtex and 14.5 tex) were used and 14.5 tex polypropylene and 44 dtex lycra multifilament yarns were also used for the face and back side of the spacer fabrics (Table I). These fabrics were developed in Syntax Pvt Ltd Czech Republic. Findings – The main influence on the water vapour permeability of warp knitted spacer fabrics is the kind of raw material, i.e. fibre wetting and wicking. Also there is no correlation between air permeability and water vapour permeability. It is found that both air permeability and thermal conductivity are closely related to the fabric density. It is also found that the fabric characteristics of spacer fabric show a very significant effect on the air permeability, thermal conductivity and mechanical properties of spacer fabric. Therefore, selection of spacer fabric for winter clothing according to its fabric characteristics. Practical implications – The main objective of the present study is to produce spacer knitted 3D fabrics suitable for defined climatic conditions to be used as clothing or in sports goods. Originality/value – New 3D knitted spacer fabrics can be produced with improved comfort properties.


2018 ◽  
Vol 30 (1) ◽  
pp. 29-37
Author(s):  
Ramakrishnan G. ◽  
Prakash C. ◽  
Janani G.

Purpose The purpose of this paper is to investigate plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties. Design/methodology/approach The plasma treated and untreated fabrics were dyed using reactive dyes and evaluated for comfort properties such as wicking, water vapour permeability and air permeability. Findings The various comfort properties of plasma treated and an untreated Tencel microfibre fabric have been studied. The wicking results showed a significant reduction in wicking time for plasma treated fabrics compared to untreated fabrics. The test results for water vapour permeability show no significant difference between plasma treated and untreated fabrics. The plasma treated samples show higher air permeability than untreated samples. In the wetting test, it is clearly seen that the plasma treated samples absorbed the water at a faster rate. Originality/value This research investigates plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties.


2021 ◽  
Vol 72 (03) ◽  
pp. 244-249
Author(s):  
AMANY HALIL ◽  
PAVLA TĚŠINOVÁ ◽  
ABDELHAMID R.R. ABOALASAAD

Knitted fabrics are characterized by comfort compared to woven fabrics due to their high extensibility and airpermeability, but they have lower dimensional stability after repeated washing especially single jersey knitted fabric(SJKF). Therefore, the spandex (Lycra) core-spun yarns are used to maintain the dimensions of knitted fabrics duringuse and after repeated stresses. In this study, nine elastic SJKF samples were produced at three levels of loop lengthand spandex percent using yarn linear density 30/1 Ne. For comparison, three 100% cotton knitted samples wereproduced with the same levels of loop length and yarn count. The dimensional and thermal comfort properties of thelong-stretch samples were compared with the short-stretch cotton knitted fabric. The thermal comfort properties (thermalconductivity, resistance, absorptivity, and water vapour permeability), air permeability, and dimensional properties weremeasured and compared to 100% cotton samples. The results showed that the stitch density, fabric density, fabricthickness, and thermal resistance increased, whereas the air, water vapour permeability, and spirality angle decreasedin cotton/spandex samples.


2013 ◽  
Vol 779-780 ◽  
pp. 319-322
Author(s):  
Ming Hung Shu ◽  
Jui Chan Huang ◽  
Thanh Lam Nguyen ◽  
Bi Min Hsu

Water-vapour permeability is a critical factor of writing/ printing papers in most of practical applications; but how to monitor the manufacturing process to keep the key characteristic of the paper in control is still understudied. Therefore, in this paper, in order to monitor the water-vapour permeability of writing/ printing papers, MaxGWMA chart is first suggested due to its best effectiveness in terms of average run length performance and its high capability of detecting small shifts in the process mean and variability as well as identifying the source and the direction of an out-of-control signal. By using MaxGWMA chart, assignable causes of any out-of-control signal should be deeply examined so as to have proper corrective actions undertaken to either eliminate them from the process or reduce the variability induced by them to make the papers consistently manufactured under a stable process.


Sign in / Sign up

Export Citation Format

Share Document