Mechanical behavior of aeronautical composites containing self-healing microcapsules

2018 ◽  
Vol 9 (6) ◽  
pp. 753-767 ◽  
Author(s):  
Panagiota Polydoropoulou ◽  
Christos Vasilios Katsiropoulos ◽  
Andreas Loukopoulos ◽  
Spiros Pantelakis

Purpose Over the last decades, self-healing materials based on polymers are attracting increasing interest due to their potential for detecting and “autonomically” healing damage. The use of embedded self-healing microcapsules represents one of the most popular self-healing concepts. Yet, extensive investigations are still needed to convince on the efficiency of the above concept. The paper aims to discuss these issues. Design/methodology/approach In the present work, the effect of embedded self-healing microcapsules on the ILSS behavior of carbon fiber reinforced composite materials has been studied. Moreover, the self-healing efficiency has been assessed. The results of the mechanical tests were discussed supported by scanning electron microscope (SEM) as well as by Attenuated Total Reflection–Fourier-transform infrared spectroscopy (ATR–FTIR) analyses. Findings The results indicate a general trend of a degraded mechanical behavior of the enhanced materials, as the microcapsules exhibit a non-uniform dispersion and form agglomerations which act as internal defects. A remarkable value of the self-healing efficiency has been found for materials with limited damage, e.g. matrix micro-cracks. However, for significant damage, in terms of large matrix cracks and delaminations as well as fiber breakages, the self-healing efficiency is limited. Originality/value The results obtained by SEM analysis as well as by ATR–FTIR spectroscopy constitute a strong indication that the self-healing mechanism has been activated. However, further investigation should be conducted in order to provide definite evidence.

2018 ◽  
Vol 9 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Elisa Calabrese ◽  
Pasquale Longo ◽  
Carlo Naddeo ◽  
Annaluisa Mariconda ◽  
Luigi Vertuccio ◽  
...  

PurposeThe purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.Design/methodology/approachHere, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyncatalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.FindingsThe HG2MesPhSyncomplex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.Originality/valueIn this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Ali Berkem ◽  
Ahmet Capoglu ◽  
Turgut Nugay ◽  
Erol Sancaktar ◽  
Ilke Anac

The self-healing ability can be imparted to the polymers by different mechanisms. In this study, self-healing polydimethylsiloxane-graft-polyurethane (PDMS-g-PUR)/Vanadium pentoxide (V2O5) nanofiber supramolecular polymer composites based on a reversible hydrogen bonding mechanism are prepared. V2O5 nanofibers are synthesized via colloidal route and characterized by XRD, SEM, EDX, and TEM techniques. In order to prepare PDMS-g-PUR, linear aliphatic PUR having one –COOH functional group (PUR-COOH) is synthesized and grafted onto aminopropyl functionalized PDMS by EDC/HCl coupling reaction. PUR-COOH and PDMS-g-PUR are characterized by 1H NMR, FTIR. PDMS-g-PUR/V2O5 nanofiber composites are prepared and characterized by DSC/TGA, FTIR, and tensile tests. The self-healing ability of PDMS-graft-PUR and composites are determined by mechanical tests and optical microscope. Tensile strength data obtained from mechanical tests show that healing efficiencies of PDMS-g-PUR increase with healing time and reach 85.4 ± 1.2 % after waiting 120 min at 50 °C. The addition of V2O5 nanofibers enhances the mechanical properties and healing efficiency of the PDMS-g-PUR. An increase of healing efficiency and max tensile strength from 85.4 ± 1.2% to 95.3 ± 0.4% and 113.08 ± 5.24 kPa to 1443.40 ± 8.96 kPa is observed after the addition of 10 wt % V2O5 nanofiber into the polymer.


2021 ◽  
Author(s):  
Ricardo Hungria ◽  
Momen Mousa ◽  
Marwa Hassan ◽  
Omar Omar ◽  
Andrea Gavilanes ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 543
Author(s):  
Dong-Min Kim ◽  
Junseo Lee ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
Kyeong-Nam Nam ◽  
...  

Although self-healing protective coatings have been widely studied, systematic research on healing performance of the coating according to damage width has been rare. In addition, there has been rare reports of self-healing of the protective coating having damage width wider than 100 µm. In this study, self-healing performance of a microcapsule type self-healing protective coating on cement mortar was studied for the coating with damage width of 100–300 µm. The effect of capsule-loading (20 wt%, 30 wt% and 40 wt%), capsule size (65-, 102- and 135-µm-mean diameter) and coating thickness (50-, 80- and 100-µm-thick undercoating) on healing efficiency was investigated by water sorptivity test. Accelerated carbonation test, chloride ion penetration test and scanning electron microscope (SEM) study were conducted for the self-healing coating with a 300-µm-wide damage. Healing efficiency of the self-healing coating decreased with increasing damage width. As capsule-loading, capsule size or coating thickness increased, healing efficiency of the self-healing coating increased. Healing efficiency of 76% or higher was achieved using the self-healing coating with a 300-µm-wide scratch. The self-healing coating with a 200-µm-wide crack showed healing efficiency of 70% or higher. The self-healing coating having a 300-µm-wide scratch showed effective protection of the substrate mortar from carbonation and chloride ion penetration, which was supported by SEM study.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Xu ◽  
Xianzhi Wang ◽  
Junqing Zuo ◽  
Xiaoyan Liu

Protective carrier is essential for the self-healing of concrete cracks by microbially induced CaCO3 precipitation, owing to the harsh conditions in concrete. In this paper, porous ceramsite particles are used as microbial carrier. Heat treatment and NaOH soaking are first employed to improve the loading content of the ceramsite. The viability of bacterial spores is assessed by urea decomposition measurements. Then, the self-healing efficiency of concrete cracks by spores is evaluated by a series of tests including compressive strength regain, water uptake, and visual inspection of cracks. Results indicate that heat treatment can improve the loading content of ceramsite while not leading to a reduction of concrete strength by the ceramsite addition. The optimal heating temperature is 750°C. Ceramsite particles act as a shelter and protect spores from high-pH environment in concrete. When nutrients and spores are incorporated in ceramsite particles at the same time, nutrients are well accessible to the cells. The regain ratio of the compressive strength increases over 20%, and the water absorption ratio decreases about 30% compared with the control. The healing ratio of cracks reaches 86%, and the maximum crack width healed is near 0.3 mm.


2011 ◽  
Vol 13 (5) ◽  
pp. 426-435 ◽  
Author(s):  
Daniel Coillot ◽  
François O. Méar ◽  
Renaud Podor ◽  
Lionel Montagne

2021 ◽  
Vol 7 ◽  
Author(s):  
Yan Gong ◽  
Jian Xu ◽  
Er-hu Yan ◽  
Jun-hua Cai

In this study, the molecular dynamics simulation was used to explore the effects of carbon-based nanomaterials as binder modifiers on self-healing capability of asphalt binder and to investigate the microscopic self-healing process of modified asphalt binders under different temperature. An asphalt average molecular structure model of PEN70 asphalt binder was constructed firstly. Further, three kinds of carbon-based nanomaterials were added at three different percentages ranging from 0.5 to 1.5% to the base binder to study their effects on the self-healing capability, including two carbon nanotubes (CNT1 and CNT2) and graphene nanoflakes. Combining with the three-dimensional (3D) microcrack model to simulate the asphalt self-healing process, the density analysis, relative concentration analysis along OZ direction, and mean square displacement analysis were performed to investigate the temperature sensitive self-healing characters. Results showed that the additions of CNTs were effective in enhancing the self-healing efficiency of the plain asphalt binder. By adding 0.5% CNT1 and 0.5% CNT2, about 652% and 230% of the mean square displacement of plain asphalt binder were enhanced at the optimal temperatures. However, the use of graphene nanoflakes as an asphalt modifier did not provide any noticeable changes on the self-healing efficiency. It can be found that the self-healing capability of the asphalt was closely related to the temperature. For base asphalt, the self-healing effect became especially high at the phase transition temperature range, while, for the modified asphalt, the enhancement of the self-healing capability at the low phase transition temperature (15°C) became negligible. In general, the optimal healing temperature range of the CNTs modified asphalt binders is determined as 45–55°C and the optimal dosage of the CNTs is about 0.5% over the total weight of the asphalt binder. Considering the effect of carbon-based nanomaterials on the self-healing properties, the recommended carbon-based nanomaterials modifier is CNT1 with the aspect ratio of 1.81.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1328
Author(s):  
Chloé Paquet ◽  
Stephen Brown ◽  
Jolanta E. Klemberg-Sapieha ◽  
Jean-François Morin ◽  
Véronic Landry

Wood is increasingly used in construction for the benefits it brings to occupants and for its ecological aspect. Indoor wood products are frequently subject to mechanical aggressions, their abrasion and scratch resistance thus need to be improved. The coating system ensures the wood surface protection, which is, for wood flooring, a multilayer acrylate UV-curable 100% solid system. To increase the service life of wood flooring, a new property is studied: self-healing. The objective of this study is to observe the impact of monomer structure on self-healing efficiency and the effect of self-healing parameters. A previous formulation was developed using hydrogen bond technology to generate the self-healing property. In this paper, the assessment of the formulation and the self-healing parameters’ impact on self-healing efficiency as well as the physicochemical properties are presented. The composition of the monomer part in the formulations was varied, and the effect on the conversion yield (measured by FT-IR), on the Tg and crosslinking density (measured by DMA) and on mechanical resistance (evaluated via hardness pendulum, indentation, and reverse impact) was analyzed. The self-healing efficiency of the coatings was determined by gloss and scratch depth measurements (under constant and progressive load). It was proven that monomers with three acrylate functions bring too much crosslinking, which inhibits the chain mobility necessary to observe self-healing. The presence of the AHPMA monomer in the formulation permits considerably increasing the crosslinking density (CLD) while keeping good self-healing efficiency. It was also observed that the self-healing behavior of the coatings is different according to the damage caused. Indeed, the self-healing results after abrasion and after scratch (under constant or progressive load) are different. In conclusion, it is possible to increase CLD while keeping self-healing behavior until a certain limit and with a linear monomer structure to avoid steric hindrance. Moreover, the selection of the best coatings (the one with the highest self-healing) depends on the damage.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012004
Author(s):  
W H Choong ◽  
H H Hamidi ◽  
K B Yeo

Abstract This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80°C before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength.


Sign in / Sign up

Export Citation Format

Share Document