Effects of iron content on tribological properties of Cu-Fe-based friction material

2019 ◽  
Vol 71 (5) ◽  
pp. 718-723
Author(s):  
Yanxin Zheng ◽  
Ying Liu ◽  
Feng Zheng ◽  
Qingsong Song ◽  
Caili Zhang ◽  
...  

Purpose The purpose of this study is to investigate the effect of iron content on the friction and wear performances of Cu–Fe-based friction materials under dry sliding friction and wear test condition. Design/methodology/approach Cu–Fe-based friction materials with different iron content were prepared by powder metallurgy route. The tribological properties of Cu–Fe-based friction materials against GCr15 steel balls were studied at different applied loads and sliding speeds. Meanwhile, microstructure and phases of Cu–Fe-based friction materials were investigated. Findings Cu–Fe-based friction materials with different iron content are suitable for specific applied load and sliding speed, respectively. Low iron content Cu–Fe-based friction material is suitable for a high load 60 N and low sliding speed 70 mm/min and high iron content Cu–Fe-based friction material will be more suitable for a high load 60 N and high sliding speed 150 mm/min. The abrasive wear is the main wear mechanism for two kinds of Cu–Fe-based friction materials. Originality/value The friction and wear properties of Cu–Fe-based friction materials with different iron content were determined at different applied loads and sliding speeds, providing a direction and theoretical basis for the future development of Cu–Fe-based friction materials.

2019 ◽  
Vol 71 (10) ◽  
pp. 1206-1212
Author(s):  
Jianpeng Wu ◽  
Biao Ma ◽  
Heyan Li ◽  
Chengnan Ma

Purpose The purpose of this paper is to study friction and wear properties of three types of steels against paper-based friction disc, including 65Mn, 20#steel and 30CrAl, so as to obtain the appropriate working conditions for different friction materials in the transmission system. Design/methodology/approach Based on actual working conditions, pin-on-disc tests are conducted on a universal material tester. The two evaluation indexes, including average friction coefficient and variation coefficient, are introduced to analyze the different friction properties among three types of steel. Furthermore, the temperature-dependent wear pattern and wear depth are subsequently studied. Findings The results show that 65Mn is more suitable for working under heavy load and low velocity, but 30CrAl and 20#steel are suitable for working under light load and high velocity. Moreover, wear primarily occurs on paper-based material and peaks at about 325. Practical implications This research of different materials and friction property for friction pairs is helpful to improve the performance and prolong the service life of transmission systems. Originality/value Suitable working conditions of different friction materials are obtained, and the correlation between wear and decomposition in high temperature is verified.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2012 ◽  
Vol 619 ◽  
pp. 536-540
Author(s):  
Jia Qing Liang ◽  
Chang Sheng Li ◽  
Hua Tang ◽  
Yi Zhang ◽  
Wen Jing Li ◽  
...  

Nb1-xTixSe2(x=0~1) micro/nano-particles have been successfully prepared via solid-state thermal (750°C) reaction between microsized Nb, Ti with Se powders under seal environment in a seal quartz tube and characterization by X-ray diffractometer and scanning electron microscopy. It was found that the morphologies of the as-prepared products changed from microplates to micro-nanoparticles or aggregations composed of layer structure with the doping of Ti. And the amount of regular hexagonal microplates evidently reduced and nanoscaled particles increased with the increase of the contents of Ti dopant within a certain limit (1-20 atwt. %). The tribological properties of the as-prepared products as additives in paraffin were investigated by UMT-2 multispecimen tribotester. By the addition of Nb1-xTixSe2micro/nanoparticles in paraffin, the antiwear ability was improved and the friction coefficient was decreased. The paraffin with Nb1-xTixSe2micro/nanoparticles showed better tribological properties than that with pure NbSe2. A combination of the molecule-bearing mechanism of sliding friction, and fill in-repair work between the rubbing surfaces can explain the good friction and wear properties of Nb1-xTixSe2micro/nanoparticles.


2013 ◽  
Vol 645 ◽  
pp. 133-136
Author(s):  
Peng Qiao ◽  
Yan Qiu Xia ◽  
Xiang Yu Ge

Overbased calcium sulfonate complex greases have excellent friction and wear properties and have been widely used in metallurgy and mining equipment. The effects and tribological performance of molybdenum dialkydithiocarbamate (MoDTC) and ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C2OHMim][NTf2]), 1-(2-hydroxyethyl)-3-hexylimidazolium bis (trifluoromethylsulfonyl) imide ([C2OHHim][NTf2s]), added in overbased calcium sulfonate complex grease as additives were investigated by using reciprocating ball-on-disk sliding friction tester. The results showed that the two kinds of additives with a certain range of concentration could improve the tribological properties of greases.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Xinlei Gao ◽  
Jian Li ◽  
Wanzhen Gao ◽  
Li Wu

Poly-α-olefin (PAO) is an important synthetic fluid in the field of industry lubricants. To improve the tribological properties of PAO, a Schiff base copper complex was added to the lubricants. The tribological properties of steel and steel lubricated with PAO and PAOs containing a Schiff base copper complex were studied. The friction and wear properties of steel and steel lubricated with PAO and PAOs containing a Schiff base copper complex were evaluated using a SST-ST pin-disc tester. The sliding friction was measured using lubricants with or without a Schiff base copper complex and analyzed using surface analysis techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal white light microscopy. A UMT-2 universal tribometer was also used to study the tribological properties of modifying PAO containing the Schiff base copper complex. The Schiff base copper complex structure was found to assist in the formation of a stronger tribofilm; more than the tribofilm prepared by lubricating only with PAO and this is crucial in obtaining a low and stable coefficient of friction. A lower stable friction coefficient and wear was found for the steel/steel surface contact when using the PAOs containing the Schiff base copper complex compared to the samples lubricated with the PAO without additives. The excellent tribological performance of the PAOs containing the Schiff base copper complex is attributed to the formation of a useful tribofilm with organic and inorganic groups on the sliding surface.


2006 ◽  
Vol 510-511 ◽  
pp. 650-653
Author(s):  
Bum Rae Cho ◽  
Han Young Lee

Mullite reinforced composites were produced by the injection molding technique to develop environmentally friendly friction materials for automotive applications. In order to examine the effect of mullite content on the friction and wear properties, two different specimens containing 10wt% and 30wt% of mullite were respectively fabricated and wear-tested by using the plate-on-disc type sliding friction and wear test machine. The sliding friction and wear test demonstrated that both specimens show similar tendencies at different sliding speeds under a low load of 2.9N. In comparison with common glass fiber reinforced composites, both of the mullite reinforced composites exhibited a lower wear rate at room temperature.


2016 ◽  
Vol 68 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Dawit Zenebe Segu

Purpose – The purpose of this paper is to study the possibility and validity of using radio frequency (RF) power argon (AR) ion plasma treatment to modify the surface of nitrile butadiene rubber (NBR) and the change in the chemical structure under various bias voltage. Using wear test, the authors also compared the friction and wear properties of untreated and treated NBR. Design/methodology/approach – The hybrid RF-power sputtering system was used to generate RF Ar plasma to modify the surface of NBR specimens. The tribological properties were evaluated by ball-on-disc test using a load cell mounted on the ball holder. Findings – It was found that the NBR surface treated by the Ar plasma improved the wettability, friction and wear performance than the untreated NBR. The ATR-IR analysis indicated that the improvement come from the oxygen based functional groups generated on the surface of NBR. The improvement of friction and wear resistance may also come from the formation of nanostructure surface. Originality/value – In this study, the authors develop the RF AR ion plasma treatment at different bias voltage, and it has been used to modify the surface of NBR to increase the tribological performance.


2011 ◽  
Vol 322 ◽  
pp. 404-407 ◽  
Author(s):  
Feng Yan Sun ◽  
Jian Jun Qu

Traveling wave ultrasonic motor (TWUSM) is driven by friction force between stator and rotor. As the friction materials of contact layer in traveling wave ultrasonic motor(TWUSM), tribological properties of Ekonol composites(EK2) have important effects on motor driving characteristics and service life. Then EK2 was stuck on the stator tooth of 40 type disc-shape TWUSM. Under different driven mode and friction combination, tribological properties of EK2 was tested,and the wear morphologies of EK2 surfaces are observed by SEM. Results show that there are ultrasonic antifriction phenomenon in stator/rotor contact interface under ultrasonic drive. Ultrasonic fatigue is the main wear mechanism of contact layer. When Ek2 combine with Cu rotor, contact layer can obtain bigger friction coefficient, higher output torque and better wear properties. Then Ek2 and Cu rotor is a good friction combination which can satisfy the actual running needs of TWUSM.


2017 ◽  
Vol 69 (5) ◽  
pp. 775-781 ◽  
Author(s):  
Wang Chengmin ◽  
Yang Xuefeng ◽  
Cai Xiguang ◽  
Ma Tao ◽  
Li Yunxi ◽  
...  

Purpose This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process. Design/methodology/approach ABAQUS finite element software was used to analyze thermo-mechanical coupled field of friction materials. XD-MSM constant speed friction testing machine was used to test friction and wear properties of friction material. Worn surface morphology and mechanism of friction materials were observed by using scanning electron microscope. Findings The results show that when the temperature was below 350°C, worn mechanism of MFBL was mainly fatigue wear and abrasive wear, and worn mechanism of GFBL was mainly fatigue wear because MFBL contained lignin fiber. Therefore, it exhibits better mechanical properties and friction and wear properties than those of GFBL. Originality/value Lignin fiber can improve mechanical properties and friction and wear properties of the automobile brake lining.


2011 ◽  
Vol 399-401 ◽  
pp. 1946-1950 ◽  
Author(s):  
Wen Jing Li ◽  
Chang Sheng Li ◽  
Kong Qiang Wu

The inorganic materials(MoSe2/C) and MoSe2 were synthesized via solid-state reaction methods and characterized by a series of techniques. The growth process of the products was discussed on the basis of the experimental facts. The tribological properties of MoSe2/C and MoSe2as additives in 150bn basic oil were investigated by UMT-2 multispecimen tribotester. Under the determinate conditions, the friction coefficient of the basic oil containing MoSe2/C (or MoSe2) was lower than that of the basic oil. Moreover, the tribological property of the basic oil with the MoSe2/C was better than that with MoSe2nanoflakes. A combination of sliding friction, stable tribofilm and fill in-repair mechanisms on the rubbing surface could explain the good friction and wear properties of MoSe2/C and MoSe2as additives.


Sign in / Sign up

Export Citation Format

Share Document