Study on the frictional performance of slide and plateau honed cylinder liners during running-in

2017 ◽  
Vol 69 (2) ◽  
pp. 282-299 ◽  
Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

Purpose During running-in, the change in the honed cylinder liner surface alters the performance and efficiency of the piston ring-pack system. The present paper, thus, aims to investigate the surface topography and wear and friction evolution of a cylinder liner surface during the running-in tests on a reciprocating ring–liner tribometer under a mixed lubrication regime. After an initial period of rapid wear termed “running-in wear”, a relatively long-term steady-state surface topography can emerge. A numerical model is developed to predict the frictional performance of a piston ring-pack system at the initial and steady-state stages. Design/methodology/approach The liner surfaces are produced by slide honing (SH) and plateau honing (PH). The bearing area parameter (Rk family), commonly used in the automotive industry, is used to quantitatively characterize the surface topography change during the running-in process. A wear volume-sensitive surface roughness parameter, Rktot, is used to show the wear evolution. Findings The experimental results show that a slide-honed surface leads to reduced wear, and it reduces the costly running-in period compared to the plateau-honed surface. The simulation results show that running-in is a beneficial wear process that leads to a reduced friction mean effective pressure at the steady-state. Originality/value To simulate the mixed lubrication performance of a ring–liner system with non-Gaussian roughness, a one-dimensional homogenized mixed lubrication model was established. The real surface topography instead of its statistical properties is taken into account.

Author(s):  
Jeffrey Jocsak ◽  
Yong Li ◽  
Tian Tian ◽  
Victor W. Wong

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of the surface finish on ring-pack performance is not well understood. The current study focuses on modeling the effects of three-dimensional cylinder liner surface anisotropy on piston ring-pack performance. A rough surface flow simulation program was developed to generate flow factors and shear stress factors for three-dimensional cylinder liner surface textures. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between actual rough surfaces. The surface specific flow factors, shear stress factors, and asperity contact model were used in conjunction with MIT’s previously developed ring-pack simulation program to predict the effects of different surface textures on ring-pack behavior. Specific attention was given to the effect of honing groove cross-hatch angle on piston ring-pack friction in a stationary natural gas engine application, and adverse effects on engine oil consumption and durability were also briefly considered. The modeling results suggest that ring-pack friction reduction is possible if the liner honing cross hatch angle is decreased by reducing the feed-to-speed ratio of the honing tool. Reducing the cross-hatch angle increased oil flow blockage and increased the lubricant’s effective viscosity during mixed lubrication. This allowed more load to be supported by hydrodynamic pressure, reducing ring-pack friction. However, there appeared to be a potential for increased oil consumption and scuffing tendency corresponding to a decrease in honing cross-hatch angle.


Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

The cylinder liner surface finish, which is commonly produced using the honing technique, is an essential factor of engine performance. The characteristics of the texture features, including the cross-hatch angle, the plateau roughness and the groove depth, significantly affect the performance of the ring pack–cylinder liner system. However, due to the influence of the honed texture features, the surface roughness of the liner is not subject to Gaussian distribution. To simulate the mixed lubrication performance of the ring–liner system with non-Gaussian roughness, the combination of a two-scale homogenization technique and a deterministic asperities contact method is adopted. In this study, a one-dimensional homogenized mixed lubrication model is established to study the influence of groove parameters on the load-carrying capacity and the frictional performance of the piston ring–liner system. The ring profile, plateau roughness, and operating conditions are taken into consideration. The main findings are that for nonflat ring, shallow and wide groove textures are beneficial for friction reduction, and there exists an optimum groove density that makes the friction minimum; for flat ring, wide and sparse grooves help improving the tribological performance, and there exists an optimum groove depth that makes the friction minimum.


2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


Author(s):  
Liang Liu ◽  
Tian Tian ◽  
Ertan Yilmaz

To estimate oil evaporation from an engine cylinder liner, an evaporation model has been implemented and incorporated with an existing 3-D piston ring-pack lubrication model. In this evaporation model, oil is modeled as being composed of distinct hydrocarbon species. Due to the depletion of light species and temperature variation, oil composition changes with space and time. Great emphasis was placed on the change of oil composition caused by oil transport through the ring-pack movement along the liner. The model was applied to a gasoline engine, and it was demonstrated that due to the movement of piston ring-pack, oil can be transported from the lower liner region to the upper liner region during the compression stroke, which gives a continuous supply of light species for oil evaporation.


Author(s):  
Jeffrey Jocsak ◽  
Victor W. Wong ◽  
Tian Tian

This paper presents enhancements to a previously developed mixed-lubrication ring-pack model that has been used extensively in the automotive industry in predicting piston-ring/liner oil film thickness, friction and oil-transport processes along the liner. The previous model considers three lubrication regimes, shear thinning of the lubricant, and the unsteady wetting conditions of the rings at the leading and trailing edges. The model incorporates the effects of surface roughness by using Patir and Cheng’s average flow model and the Greenwood and Tripp statistical asperity contact model, assuming a Gaussian distribution of surface roughness. However, as a result of the methods used to machine a cylinder liner and the wear-in process observed in engines, the cylinder liner finish is highly non-Gaussian. The purpose of this current study is to understand the effects of additional surface parameters other than Gaussian root-mean-square surface roughness on piston ring-pack friction in the context of a natural gas reciprocating engine ring/liner interface. In general, the surface roughness of a cylinder liner is negatively skewed. Applying similar methodology published in the literature, a wide variety of non-Gaussian probability density functions were generated in terms of the skewness of the cylinder liner surface. These probability density functions were implemented into the Greenwood and Tripp asperity contact model, and subsequently into the traditional MIT ring-pack friction model. The effects of surface skewness on flow were approximated using Gaussian flow factors and a simple truncation method. The enhanced model was studied in conjunction with results from an existing ring-pack dynamic model that provided the dynamic twists of the rings relative to the liner and inter-ring pressures. In this manner, a detailed analysis of the effects of engineered cylinder liner finish on reducing friction losses was performed.


2009 ◽  
Vol 137 (2) ◽  
pp. 128-141
Author(s):  
Andrzej WOLFF

In the paper a model of a piston ring pack motion on an oil film has been analysed. The local oil film thickness can be compared to height of the combined roughness of mating surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng [6, 7] and Greenwood, Tripp [3] have been combined [12] and used in this paper. A model of a gas flow through the labyrinth seal of piston rings has been developed [13, 15]. In addition models of ring twist effects and axial ring motion in piston grooves have been applied [14, 15]. In contrast to the previous papers of the author, an experimental verification of the main parts of developed mathematical model and software has been presented. A relatively good compatibility between the experimental measurements and calculated results has been achieved. In addition this study presents the simulation results for an automobile internal combustion engine


Author(s):  
Chunxing Gu ◽  
Di Zhang

This paper proposes an efficient numerical approach to predict the initial running-in process of piston ring pack/cylinder liner system. A combined mixed lubrication and wear model coupled with an oil transport model was developed. In order to predict the hydrodynamic pressure efficiently, two improved methodologies, including the Fischer-Burmsister-Newton-Schur (FBNS) approach and the Grid Refinement (GR) strategy, were adopted. Meanwhile, in order to take into account the effect of skewness, Weibull distribution function was adopted to characterize the asperity height distribution. Predicting the wear of cylinder liner was based on the Archard's wear law. The influences of asperity plastic deformation and wear on asperity height distribution were considered. The results show that the developed model can well predict the initial running-in behavior of piston ring pack/cylinder liner system under an engine-like condition.


Author(s):  
Xiaoming Ye ◽  
Guohua Chen ◽  
Maji Luo ◽  
Yankun Jiang

A three-dimensional, hydrodynamic mixed lubrication model has been developed to investigate the frictional performance of piston ring and cylinder liner contact. The model is based on the average Reynolds equation and asperity contact approach with the considerations of surface roughness, rupture location, blowby through the piston ring pack and nonaxisymmetry in circumferential direction of cylinder liner. The equation has been solved cyclically using the finite difference method in a fully flooded inlet boundary condition and a flow-continuity Reynolds boundary condition for cavitation outlet zone. The oil film thickness, hydrodynamic pressure distribution, friction force and friction heat generated at the piston ring/cylinder liner interface are determined as the function of crank angle position. The results show that the shape of the cylinder liner (out-of-roundness) significantly affects the lubrication performance of the piston ring pack. A heat transfer model has been presented to evaluate the effects of friction heat on the temperatures of piston and cylinder liner system. The friction heat is added on the piston ring/cylinder liner interface as the flux boundary condition. The temperature fields of piston and cylinder liner system are acquired by the FEM, which reveal the distribution of the friction heat in this system. The results show that the friction heat mainly affects the temperature on the region near the top ring groove of the piston ring pack. The effect decreases at the region away from the top ring groove, especially at the piston skirt. The effect of friction heat on the temperature of cylinder liner is smaller than that of piston ring pack.


Sign in / Sign up

Export Citation Format

Share Document