Porous exponential slider bearings lubricated with MHD-couple stress fluid

2018 ◽  
Vol 70 (5) ◽  
pp. 838-845 ◽  
Author(s):  
N.B. Naduvinamani ◽  
Shridevi S. Hosmani

Purpose The purpose of this study is to examine the magneto-hydrodynamic (MHD) effect on porous exponential slider bearings lubricated with couple stress fluid and to derive the modified Reynolds’s equation for non-Newtonian fluid under various operating conditions to obtain the optimum bearing parameters. Design/methodology/approach Based upon the MHD theory and Stokes theory for couple stress fluid, the governing equations relevant to the problem under consideration are derived. This paper analyzes the effect on porous exponential slider bearings with an electrically conducting fluid in the presence of a transverse magnetic field. Semi-numerical solutions are obtained and discussed. Findings It is found that there is an increase in the load carrying capacity, frictional force and decrease in the co-efficient of friction in porous bearings due to the presence of magnetic effects with couple stress fluid. Originality/value This study is relatively original and gives the MHD effect on porous exponential slider bearings lubricated with couple stress fluid. The author believes that the paper presents these results for the first time.

2019 ◽  
Vol 71 (10) ◽  
pp. 1158-1165
Author(s):  
Mouhcine Mouda ◽  
Mohamed Nabhani ◽  
Mohamed El Khlifi

Purpose This study aims to examine the magneto-elastohydrodynamic effect on finite-width slider-bearings lubrication using a non-Newtonian lubricant. Design/methodology/approach Based on the magneto-hydrodynamic (MHD) theory and Stokes micro-continuum mechanics, the modified two-dimensional Reynolds equation including bearing deformation was derived. Findings It is found that the bearing deformation diminishes the load-capacity and increases the friction coefficient in comparison with the rigid case. However, the non-Newtonian effect increases load-capacity but decreases the friction coefficient. Moreover, the use of a transverse magnetic field increases both the friction coefficient and load capacity. Originality/value This study combines for the first time MHD and elastic deformation effects on finite-width slider-bearings using a non-Newtonian lubricant.


2019 ◽  
Vol 71 (10) ◽  
pp. 1136-1143 ◽  
Author(s):  
Boualem Chetti ◽  
Wael Ahmed Crosby

Purpose The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives modeled as a couple stress fluid. Design/methodology/approach Based on the micro-continuum theory, the modified Reynolds equation for couple stress fluids is solved using a finite difference method to obtain the distribution of the pressure, the load-carrying capacity, the attitude angle, the friction coefficient and the side leakage for various values of the couple stress parameter and the preload factor. Findings The results show that the presence of a couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. Thus, it is found that the preload significantly affects the performance of the three-lobe journal bearing lubricated with a couple stress fluid or a Newtonian fluid. Moreover, the investigation showed that increasing the preload factor exhibits an increase in the load carrying capacity and the attitude angle, but it decreases the friction coefficient and the side leakage especially at a lower preload factor. Furthermore, using a couple stress fluid and a higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient. Practical implications This study helped improve the performance characteristics of the three-lobe journal bearing. Originality/value The presence of couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. The usage of the couple stress fluid and the higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.


2020 ◽  
Vol 13 (1) ◽  
pp. 35-40
Author(s):  
Yongbin Zhang ◽  
Huansheng Cheng ◽  
Junyan Wang

Background: As a successive part, the paper introduces the second mode of abnormal hydrodynamic thrust slider bearings with divergent surface separations registered in the patents, where the boundary slippage is artificially designed both on the stationary surface in the inlet zone and on the whole moving surface. Objective : To introduce a second method for artificially designing the boundary slippage for the formation of abnormal hydrodynamic thrust slider bearings. Methods: The analytical results are presented for the introduced bearings. The performances of the bearings are demonstrated. Result: : In appropriate operating conditions, the introduced bearings can have considerable loadcarrying capacities with low friction coefficients on the scales 10-3 or 10-4. With the weakening of the boundary slippage on the moving surface, the load-carrying capacities of the bearings are all increased, while the friction coefficients of the bearings are all reduced. Conclusion: When the boundary slippage is present both on the stationary surface in the bearing inlet zone and on the whole moving surface, abnormal hydrodynamic thrust slider bearings can be designed with the surface separation in the bearing inlet zone lower than that in the bearing outlet zone. The performances of these bearings are quite satisfactory.


2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.


2018 ◽  
Vol 388 ◽  
pp. 328-343
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
P.A. Dinesh

A numerical computation has been carriedout for the steady, mixed convective, incompressible, viscous, electrically conducting couple stress fluid through a vertical plate with variable fluid properties in a porous medium. A uniform magnetic field is applied in the transverse direction and parallel to the vertical plate of the physical model and governing equations are derived for it."Using a suitable similarity transformation, governed PDE's are transformed into a set of ODE's which are highly non-linear coupled equations. An advanced Shooting technique is adopted to compute the variations of velocity, temperature, concentration in terms of non-dimensional parameters. Also physical interpretation of non-dimensional parameters like couple stress parameter magnetic field Prandtl number Schmidt number thermal conductivity and solutal diffusivity parameters are examined through plots for both variable permeability and uniform permeability."From the numerical results, an excellent agreement has been observed for the present results, as well as comparison is made between the present and the earlier works for a particular case of the problem.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Das ◽  
Akram Ali ◽  
R.N. Jana

Purpose In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing. Design/methodology/approach The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables. Findings As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case. Practical implications The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc. Originality/value From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.


2019 ◽  
Vol 286 ◽  
pp. 07002
Author(s):  
M. Mouda ◽  
M. Nabhani ◽  
M. El Khlifi

This paper presents a numerical investigation of lubricating slider bearings with conducting couple stress fluids using externally applied magnetics fields. The modified two-dimensional magnetohydrodynamic couple stress Reynolds-type equation is obtained. This governing equation is resolved numerically by using finite difference scheme, which involves the Gauss–Seidel method to compute the bearing characteristics. Numerical results using different considered values of the couple stress and Hartman number are presented. These results demonstrate that the transverse magnetic field and couple stress effects are significant.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Wang-Long Li ◽  
Yuh-Ping Chang

The pure squeeze magneto-elastohydrodynamic lubrication (MEHL) motion of circular contacts with an electrically conducting fluid in the presence of a transverse magnetic field is explored under constant load condition. The differences between classical elastohydrodynamic lubrication and MEHL are discussed. The results reveal that the effect of an externally applied magnetic field is equivalent to enhancing effective lubricant viscosity. Therefore, as the Hartmann number increases, the enhancing effect becomes more obvious. Furthermore, the transient pressure profiles, film shapes, normal squeeze velocities, and effective viscosity during the pure squeeze process under various operating conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document