Pure Squeeze Motion in a Magneto-Elastohydrodynamic Lubricated Spherical Conjunction

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Wang-Long Li ◽  
Yuh-Ping Chang

The pure squeeze magneto-elastohydrodynamic lubrication (MEHL) motion of circular contacts with an electrically conducting fluid in the presence of a transverse magnetic field is explored under constant load condition. The differences between classical elastohydrodynamic lubrication and MEHL are discussed. The results reveal that the effect of an externally applied magnetic field is equivalent to enhancing effective lubricant viscosity. Therefore, as the Hartmann number increases, the enhancing effect becomes more obvious. Furthermore, the transient pressure profiles, film shapes, normal squeeze velocities, and effective viscosity during the pure squeeze process under various operating conditions are discussed.

2016 ◽  
Vol 40 (5) ◽  
pp. 821-833
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Hsiang-Chen Hsu ◽  
Yuh-Ping Chang

The effects of surface forces (SF) and coated layers (CL) on pure squeeze elastohydrodynamic lubrication (EHL) motion of circular contacts are explored under constant load condition by using the finite difference method (FDM) and the Gauss–Seidel iteration method. The transient pressure profiles, surface force, film shapes, and elastic deformation during the pure squeeze process under various operating conditions in the TFEHL regime are discussed. The simulation results reveal that the difference between SFEHL model and EHL model is apparent as the film thickness is thinner than 5 nm. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces. At contact region, the greater elastic modulus and smaller coating thicknesses, the greater pressure distribution, and the smaller film thickness. The film thicknesses are found reverse at outside the contact zone. At the exit region, i.e. the minimum film thickness region, it is valid that the greater the elastic modulus and the smaller the coating thicknesses, the greater the solvation pressure distribution. The effects of surface forces become significant as the film thickness becomes thinner.


2004 ◽  
Vol 22 (1) ◽  
pp. 29-33 ◽  
Author(s):  
N. RUDRAIAH ◽  
B.S. KRISHNAMURTHY ◽  
A.S. JALAJA ◽  
TARA DESAI

The Rayleigh–Taylor instability (RTI) of a laser-accelerated ablative surface of a thin plasma layer in an inertial fusion energy (IFE) target with incompressible electrically conducting plasma in the presence of a transverse magnetic field is investigated using linear stability analysis. A simple theory based on Stokes-lubrication approximation is proposed. It is shown that the effect of a transverse magnetic field is to reduce the growth rate of RTI considerably over the value it would have in the absence of a magnetic field. This is useful in the extraction of IFE efficiently.


2011 ◽  
Vol 25 (19) ◽  
pp. 2533-2542
Author(s):  
T. HAYAT ◽  
S. N. NEOSSI NGUETCHUE ◽  
F. M. MAHOMED

This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.


2018 ◽  
Vol 70 (5) ◽  
pp. 838-845 ◽  
Author(s):  
N.B. Naduvinamani ◽  
Shridevi S. Hosmani

Purpose The purpose of this study is to examine the magneto-hydrodynamic (MHD) effect on porous exponential slider bearings lubricated with couple stress fluid and to derive the modified Reynolds’s equation for non-Newtonian fluid under various operating conditions to obtain the optimum bearing parameters. Design/methodology/approach Based upon the MHD theory and Stokes theory for couple stress fluid, the governing equations relevant to the problem under consideration are derived. This paper analyzes the effect on porous exponential slider bearings with an electrically conducting fluid in the presence of a transverse magnetic field. Semi-numerical solutions are obtained and discussed. Findings It is found that there is an increase in the load carrying capacity, frictional force and decrease in the co-efficient of friction in porous bearings due to the presence of magnetic effects with couple stress fluid. Originality/value This study is relatively original and gives the MHD effect on porous exponential slider bearings lubricated with couple stress fluid. The author believes that the paper presents these results for the first time.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986607
Author(s):  
Li-Ming Chu ◽  
Yuh-Ping Chang ◽  
Hsiang-Chen Hsu

This study explores the effects of non-Newtonian lubricants on elastohydrodynamic lubrication with coating at impact and rebound loading using power law lubricants. The coupled transient modified Reynolds, rheology, elasticity deformation, and ball motion equations are solved simultaneously, thus obtaining the transient pressure profiles, film shapes, normal squeeze velocities and accelerations. The effect of the flow index ( n) is equivalent to enhancing the lubricant viscosity, also enlarging the damper effect. The simulation results reveal that the film thickness, the primary peak, and the secondary peak increase with increasing the flow index. The greater the flow index is, the earlier the dimple form, and the smaller the maximum value of the impact force is. The rebounding velocity and the peak value of acceleration increase with decreasing the flow index. Moreover, this research possesses academic innovation and industrial application.


Sign in / Sign up

Export Citation Format

Share Document