Film formation in EHL contacts with oil-impregnated sintered materials

2018 ◽  
Vol 70 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Milan Omasta ◽  
Martin Ebner ◽  
Petr Šperka ◽  
Thomas Lohner ◽  
Ivan Krupka ◽  
...  

PurposeThe purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).Design/methodology/approachThin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.FindingsUnder fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.Practical implicationsTo show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.Originality/valueFor the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract We design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Milan Omasta ◽  
Jakub Adam ◽  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

An understanding of mechanisms which are responsible for elastohydrodynamic lubricant film formation under high sliding conditions is necessary to increase durability of machine parts. This work combines thin-film colorimetric interferometry for lubricant film thickness measurement and infrared microscopy for in-depth temperature mapping through the contact. The results describe the effect of operating conditions such as speed, slide-to-roll ratio, ambient temperature, and sliding direction on lubricant film thickness and temperature distribution. Film thickness data shows how much the film shape is sensitive to operating conditions when thermal effects are significant, while the temperature profiles provides an explanation of this behavior.


1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650014 ◽  
Author(s):  
Kun Zhou ◽  
Qingbing Dong

This paper develops a three-dimensional (3D) model for a heterogeneous half-space with inclusions distributed periodically beneath its surface subject to elastohydrodynamic lubrication (EHL) line-contact applied by a cylindrical loading body. The model takes into account the interactions between the loading body, the fluid lubricant and the heterogeneous half-space. In the absence of subsurface inclusions, the surface contact pressure distribution, the half-space surface deformation and the lubricant film thickness profile are obtained through solving a unified Reynolds equation system. The inclusions are homogenized according to Eshelby’s equivalent inclusion method (EIM) with unknown eigenstrains to be determined. The disturbed half-space surface deformations induced by the subsurface inclusions or eigenstrains are iteratively introduced into the lubricant film thickness until the surface deformation finally converges. Both time-independent smooth surface contact and time-dependent rough surface contact are considered for the lubricated contact problem.


Author(s):  
F. Mora ◽  
P. Sainsot ◽  
A. A. Lubrecht ◽  
Y. le Chenadec

This paper is an extension of the Amplitude Reduction Theory to soft ElastoHydrodynamic contacts. The ART permits a quantitative prediction of the influence of surface roughness on the lubricant film thickness modification as a function of the operating conditions.


1996 ◽  
Vol 118 (4) ◽  
pp. 880-885 ◽  
Author(s):  
V. K. Bhatt ◽  
D. K. Sengupta

A thermal Reynolds equation, which takes into account viscosity variation across the lubricant film thickness due to shear energy dissipation within the film, has been developed. It also takes into account the effect of conduction and convection on heat transfer in the lubricant film. It indicates that the pressure gradients developed in a no-slip lubricated contact are increased with an increase in Peclet number. The use of the equation is illustrated by applying it in the film formation process in the yield phase of liquid lubricated plane strain forging. The analysis indicates that the Peclet number plays a dominant role infixing the lubricant film thickness in such contacts.


Lubricants ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 46 ◽  
Author(s):  
Mustafa Yilmaz ◽  
Michael Mirza ◽  
Thomas Lohner ◽  
Karsten Stahl

Fluid friction in elastohydrodynamically lubricated (EHL) contacts depends strongly on the lubricant considered. Synthetic oils can have significantly lower fluid friction than mineral oils. Water-containing fluids have the potential to significantly reduce fluid friction further. The aim of this study is to investigate the film formation and frictional behavior of highly-loaded EHL contacts with water-containing fluids. Comparisons are made with mineral and polyalphaolefin oils. Measurements at an optical EHL tribometer show good lubricant film formation of the considered water-containing gear fluids. Measurements at a twin-disk test rig show coefficients of friction smaller than 0.01, which is referred to as superlubricity, for all considered operating conditions.


Author(s):  
Xingnan Zhang ◽  
Romeo Glovnea

Rolling bearings are the second most used machine components. They work in what it is called elastohydrodynamic lubrication regime. The geometry of rolling element bearings makes the direct measurement of the lubricant film thickness a challenging task. Optical interferometry is widely used in laboratory conditions for studying elastohydrodynamic lubrication however it cannot be used directly in rolling element bearings thus the only suitable methods are electrical techniques. Of these, film thickness measurement based on electrical capacitance of the contacts has been used in the past by a number of authors. One of the limitations of the capacitance method, when used in rolling bearings, is that it cannot distinguish between the contacts of every rolling element and raceway on one hand and on the other between the inner and outer ring contacts. In the present study the authors used an original test rig which can measure the film thickness for only one ball and separately for the inner and outer rings of a radial ball bearing. This paper thus shows for the first-time results of the lubricant film thickness, at the inner and outer raceways, in grease lubricated rolling bearings.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuchuan Liu ◽  
Dong Zhu

Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract Polyethylene wear debris limits the longevity of prosthetic hip implants. We design a pattern of axisymmetric texture features to increase hydrodynamic pressure and lubricant film thickness and, thus, reduce solid-on-solid contact, friction, and wear in hard-on-soft prosthetic hip implant bearings. Specifically, we study the effect of the texture floor profile on the lubricant film thickness using a soft elastohydrodynamic lubrication model. We compute the optimum texture parameters that maximize the lubricant film thickness for different texture floor profiles, as a function of bearing operating conditions. Flat texture floor profiles create thicker lubricant films than sloped or curved texture floor profiles for their respective optimum texture design parameters. We find that the texture feature volume is the most important parameter in terms of maximizing the lubricant film thickness, because a linear relationship exists between the texture feature volume with optimum texture parameters and the corresponding optimum lubricant film thickness, independent of the texture floor profile.


Sign in / Sign up

Export Citation Format

Share Document