scholarly journals The Effect of Texture Floor Profile on the Lubricant Film Thickness in a Textured Hard-On-Soft Bearing With Relevance to Prosthetic Hip Implants

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract Polyethylene wear debris limits the longevity of prosthetic hip implants. We design a pattern of axisymmetric texture features to increase hydrodynamic pressure and lubricant film thickness and, thus, reduce solid-on-solid contact, friction, and wear in hard-on-soft prosthetic hip implant bearings. Specifically, we study the effect of the texture floor profile on the lubricant film thickness using a soft elastohydrodynamic lubrication model. We compute the optimum texture parameters that maximize the lubricant film thickness for different texture floor profiles, as a function of bearing operating conditions. Flat texture floor profiles create thicker lubricant films than sloped or curved texture floor profiles for their respective optimum texture design parameters. We find that the texture feature volume is the most important parameter in terms of maximizing the lubricant film thickness, because a linear relationship exists between the texture feature volume with optimum texture parameters and the corresponding optimum lubricant film thickness, independent of the texture floor profile.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract We design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.


1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


Author(s):  
F. Mora ◽  
P. Sainsot ◽  
A. A. Lubrecht ◽  
Y. le Chenadec

This paper is an extension of the Amplitude Reduction Theory to soft ElastoHydrodynamic contacts. The ART permits a quantitative prediction of the influence of surface roughness on the lubricant film thickness modification as a function of the operating conditions.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Milan Omasta ◽  
Jakub Adam ◽  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

An understanding of mechanisms which are responsible for elastohydrodynamic lubricant film formation under high sliding conditions is necessary to increase durability of machine parts. This work combines thin-film colorimetric interferometry for lubricant film thickness measurement and infrared microscopy for in-depth temperature mapping through the contact. The results describe the effect of operating conditions such as speed, slide-to-roll ratio, ambient temperature, and sliding direction on lubricant film thickness and temperature distribution. Film thickness data shows how much the film shape is sensitive to operating conditions when thermal effects are significant, while the temperature profiles provides an explanation of this behavior.


Author(s):  
F Liu ◽  
Z M Jin ◽  
F Hirt ◽  
C Rieker ◽  
P Roberts ◽  
...  

The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul™ bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul™ bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 μm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul™ bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Bruce W. Drinkwater ◽  
Jie Zhang ◽  
Katherine J. Kirk ◽  
Jocelyn Elgoyhen ◽  
Rob S. Dwyer-Joyce

This paper describes the measurement of lubricant-film thickness in a rolling element bearing using a piezoelectric thin film transducer to excite and receive ultrasonic signals. High frequency (200 MHz) ultrasound is generated using a piezoelectric aluminum nitride film deposited in the form of a very thin layer onto the outer bearing raceway. This creates a transducer and electrode combination of total thickness of less than 10 μm. In this way the bearing is instrumented with minimal disruption to the housing geometry and the oil-film can be measured noninvasively. The high frequency transducer generates a fine columnar beam of ultrasound that has dimensions less than the typical lubricated contact ellipse. The reflection coefficient from the lubricant-layer is then measured from within the lubricated contact and the oil-film thickness extracted via a quasistatic spring model. The results are described on a deep groove 6016 ball bearing supporting an 80 mm shaft under normal operating conditions. Good agreement is shown over a range of loads and speeds with lubricant-film thickness extracted from elastohydrodynamic lubrication theory.


1999 ◽  
Vol 122 (1) ◽  
pp. 65-76 ◽  
Author(s):  
G. Guangteng ◽  
P. M. Cann ◽  
A. V. Olver ◽  
H. A. Spikes

A spacer layer imaging method has been employed to map lubricant film thickness in very thin film, rough surface, rolling elastohydrodynamic (EHD) contacts. A series of model roughnesses have been produced by depositing tiny ridges and bumps on a steel ball surface and the influence of these features on film thickness has been investigated at a range of rolling speeds. It has been shown that all the model surface features studied form speed-dependent, micro-EHD lubricating films, but the detailed shape and thickness of these films depends upon the geometry of the feature and the rolling speed. All model surface features also produce a net increase in mean film thickness, compared to the smooth surface, under operating conditions where the film thickness is less than the out-of-contact height of the surface feature studied. For a real, random, rough surface, however, mean film thickness is less than the smooth surface case. The film thickness mapping technique has also been used to measure the effective roughness of surfaces in lubricated contact. This shows that surfaces based on 2-D array of tiny circular bumps become rougher as the rolling speed and thus film thickness increases. However, real, rough surfaces appear to show a decrease of in-contact roughness with increasing rolling speed. [S0742-4787(00)01001-8]


2018 ◽  
Vol 70 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Milan Omasta ◽  
Martin Ebner ◽  
Petr Šperka ◽  
Thomas Lohner ◽  
Ivan Krupka ◽  
...  

PurposeThe purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).Design/methodology/approachThin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.FindingsUnder fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.Practical implicationsTo show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.Originality/valueFor the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.


1990 ◽  
Vol 112 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Dongchu Zhao

A method for measuring the lubricant condition with strain gage in rolling element bearings and the instrument used are introduced. In order to illustrate the method and the instrument, the theory of measuring lubricant films in rolling element bearings using strain technique, test apparatus, microcomputer hardware as well as software, flow charts for the main program and subprograms, are first described in detail. In addition, the lubricant film thickness is measured for several different lubricants and results are compared with theoretical ones. It is demonstrated that using the method and the instrument introduced in this paper, one can measure the lubricant condition inside bearings very accurately.


Sign in / Sign up

Export Citation Format

Share Document