Towards achieving a fully intelligent robotic arc welding: a review

Author(s):  
John Ogbemhe ◽  
Khumbulani Mpofu

Purpose – The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies. Design/methodology/approach – This paper discusses key issues in trajectory planning towards achieving full automation of arc welding robots. The identified issues in trajectory planning are real-time control, optimization methods, seam tracking and control methodologies. Recent research is considered and brief conclusions are drawn. Findings – The major difficulty towards realizing a fully intelligent robotic arc welding system remains an optimal blend and good understanding of trajectory planning, seam tracking and advanced control methodologies. An intelligent trajectory tracking ability is strongly required in robotic arc welding, due to the positional errors caused by several disturbances that prevent the development of quality welds. An exciting prospect will be the creation of an effective hybrid optimization technique which is expected to lead to new scientific knowledge by combining robotic systems with artificial intelligence. Originality/value – This paper illustrates the vital role played by optimization methods for trajectory design in arc robotic welding automation, especially the non-gradient approaches (those based on certain characteristics and behaviour of biological, molecular, swarm of insects and neurobiological systems). Effective trajectory planning techniques leading to real-time control and sensing systems leading to seam tracking have also been studied.

2015 ◽  
Vol 21 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Edward W Reutzel ◽  
Abdalla R Nassar

Purpose – The purpose of this paper is to surveys classic and recently developed strategies for quality monitoring and real-time control of laser-based, directed-energy deposition.Additive manufacturing of metal parts is a complex undertaking. During deposition, many of the process variables that contribute to overall build quality – such as travel speed, feedstock flow pattern, energy distribution, gas pressure, etc. – are subject to perturbations from systematic fluctuations and random external disturbances. Design/methodology/approach – Sensing and control of laser-based, directed-energy metal deposition is presented as an evolution of methods developed for welding and cladding processes. Methods are categorized as sensing and control of machine variables and sensing and control of build attributes. Within both categories, classic methods are presented and followed by a survey of novel developments. Findings – Additive manufacturing would not be possible without highly automated, computer-based controllers for processing and motion. Its widespread adoption for metal components in critical applications will not occur without additional developments and integration of machine- and process-based sensing systems to enable documentation, and control of build characteristics and quality. Ongoing work in sensing and control brings us closer to this goal. Originality/value – This work serves to introduce researchers new to the field of additive manufacturing to common sources of process defects during metal powder-based, directed-energy deposition processing, and surveys sensing and control methods being investigated to improve the process. The work also serves to highlight, and stress the significance of novel developments in the field.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


2007 ◽  
Vol 40 (5) ◽  
pp. 146-150 ◽  
Author(s):  
Zhiguo Yan ◽  
De Xu ◽  
Yuan Li ◽  
Min Tan ◽  
Zengshun Zhao

1999 ◽  
Author(s):  
Kenneth Wong ◽  
Vinod J. Modi ◽  
Clarence W. de Silva ◽  
Arun K. Misra

Abstract This paper presents the design and development of a Multi-module Deployable Manipulator System (MDMS) as well as a dynamical formulation for it. The system is designed for experimental investigations aimed at dynamics and control of this variable geometry manipulator by implementing different control algorithms to regulate its performance. The manipulator operates in a horizontal plane and is unique in that it comprises of four modules, each of which has one revolute joint and one prismatic joint, connected in a chain topology. Each module has a slewing link of approximately 20cm length and is capable of extending by 15cm. The manipulator design involves the selection and sizing of actuators, the design of mounting and connecting components, and the selection of hardware as well as software for real-time control. The dynamical model is formulated using an O(N) algorithm, based on the Lagrangian approach and velocity transformations. The O(N) character is computationally efficient permitting real-time control of the system.


Author(s):  
Qiong Li ◽  
Wangling Yu ◽  
H. Henry Zhang

Designing a two-wheeled self-balancing scooter involves in the synergistic approach of multidisciplinary engineering fields with mutual relationships of power transmission, mass transmission, and information transmission. The scooter consists of several subsystems and forms a large-scale system. The mathematical models are in the complex algebraic and differential equations in the form of high dimension. The complexity of its controller renders difficulties in its realization due to the limit of iteration period of real time control. Routh model reduction technique is employed to convert the original high-dimensional mathematical model into a simplified lower dimensional form. The modeling is derived using a unified variational method for both mechanical and electrical subsystems of the scooter, and for the electronic components equivalent circuit method is adopted. Simulations of the system response are based on the reduced model and its control design. A prototype is developed and realized with Matlab-Labview simulation and control environment.


Author(s):  
Tayfun Abut ◽  
Servet Soyguder

PurposeThis paper aims to keep the pendulum on the linear moving car vertically balanced and to bring the car to the equilibrium position with the designed controllers.Design/methodology/approachAs inverted pendulum systems are structurally unstable and nonlinear dynamic systems, they are important mechanisms used in engineering and technological developments to apply control techniques on these systems and to develop control algorithms, thus ensuring that the controllers designed for real-time balancing of these systems have certain performance criteria and the selection of each controller method according to performance criteria in the presence of destructive effects is very helpful in getting information about applying the methods to other systems.FindingsAs a result, the designed controllers are implemented on a real-time and real system, and the performance results of the system are obtained graphically, compared and analyzed.Originality/valueIn this study, motion equations of a linear inverted pendulum system are obtained, and classical and artificial intelligence adaptive control algorithms are designed and implemented for real-time control. Classic proportional-integral-derivative (PID) controller, fuzzy logic controller and PID-type Fuzzy adaptive controller methods are used to control the system. Self-tuning PID-type fuzzy adaptive controller was used first in the literature search and success results have been obtained. In this regard, the authors have the idea that this work is an innovative aspect of real-time with self-tuning PID-type fuzzy adaptive controller.


2020 ◽  
Vol 10 (22) ◽  
pp. 8031
Author(s):  
Long Qin ◽  
Fanghao Huang ◽  
Zheng Chen ◽  
Wei Song ◽  
Shiqiang Zhu

Hyper-redundant continuum manipulators present dexterous kinematic skills in complicated tasks and demonstrate promising potential in underground exploration, intra-cavity inspection, surgery, etc. However, the hyper-redundancy, which endows much dexterity and flexibility, brings a huge challenge to the kinematics solution and control of the continuum manipulators. Due to the pseudoinverse calculation of high-order Jacobian matrix or iteration, many inverse kinematic solution approaches of continuum manipulators are very time-consuming, which extremely limit their applicability in real-time control. Additionally, it is often difficult for the manipulators to perform the tasks well in complex scenarios due to lack of human intervention. Therefore, in this paper, a simplified kinematics model of a typical hyper-redundant manipulator is proposed based on its unique geometry relationships, where the mapping relationships between the actuators’ rotation and the end-effector’s position are derived through the analysis of its driving subsystem and motion subsystem, in particular the joint modules. To perform the tasks of manipulators with the help of operators, a teleoperation control scheme with modified wave transmission structure is designed to achieve the guaranteed stability and improved transparency, and the leader’s trajectory and generated force feedback are the transmitted signals in the communication channel. Specifically, a virtual force feedback generation algorithm is developed in the teleoperation control scheme via the processing tracking errors, which can improve the operators’ assistance and perception during the teleoperation process. The practical experiments with comparative wave variable structures in two different sets are implemented to verify the effectiveness of proposed kinematics model and control scheme.


Mechatronics ◽  
1996 ◽  
Vol 6 (2) ◽  
pp. 141-163 ◽  
Author(s):  
Jae Seon Kim ◽  
Young Tak Son ◽  
Hyung Suck Cho ◽  
Kwang Il Koh

2018 ◽  
Vol 15 (2) ◽  
pp. 192-204 ◽  
Author(s):  
Arpit Jain ◽  
Satya Sheel ◽  
Piyush Kuchhal

Purpose The purpose of this paper is to study the application of entropy based optimized fuzzy logic control for a real-time non-linear system. Optimization of the fuzzy membership function (MF) is one of the most explored areas for performance improvement of the fuzzy logic controllers (FLC). Conversely, majority of previous works are motivated on choosing an optimized shape for the MF, while on the other hand the support of fuzzy set is not accounted. Design/methodology/approach The proposed investigation provides the optimal support for predefined MFs by using genetic algorithms-based optimization of fuzzy entropy-based objective function. Findings The experimental results obtained indicate an improvement in the performance of the controller which includes improvement in error indices, transient and steady-state parameters. The applicability of proposed algorithm has been verified through real-time control of the twin rotor multiple-input, multiple-output system (TRMS). Research limitations/implications The proposed algorithm has been used for the optimization of triangular sets, and can also be used for the optimization of other fussy sets, such as Gaussian, s-function, etc. Practical implications The proposed optimization can be combined with other algorithms which optimize the mathematical function (shape), and a potent optimization tool for designing of the FLC can be formulated. Originality/value This paper presents the application of a new optimized FLC which is tested for control of pitch and yaw angles in a TRMS. The performance of the proposed optimized FLC shows significant improvement when compared with standard references.


Sign in / Sign up

Export Citation Format

Share Document