Emerging climate changes and the risks to the operation of building assets in the UK

2016 ◽  
Vol 14 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Abdullah Alzahrani ◽  
Halim Boussabaine ◽  
Ali Nasser Alzaed

Purpose – The purpose of this paper is to report results from a survey on emerging climate changes and the risks to the operation of building assets in the UK. The property sector is facing major challenges as a result of projected climate change scenarios. Predictions concerning future climate change and the subsequent impact on building operations are still subject to a high degree of uncertainty. However, it is important that building stockholders consider a range of possible future risks that may influence the operation of their assets. Design/methodology/approach – The literature review and questionnaire are used to elicit and assess the likelihood of occurrence of climate change risks impacting building operations. The survey was carried out among building stockowners and professionals in the UK. Statistical methods were used to rank and compare the findings. Findings – The majority of the respondents strongly agreed that the list of risks that were elicited from the literature will have an impact on their building assets within a 0-5 years’ time horizon. It was found that the professionals were most concerned about higher energy prices and an increase in operation costs in general; they were least concerned about an electricity blackout. Research limitations/implications – This paper is limited to the UK, and regional variations are not explored. Nevertheless, the buildings’ operation risk study provides a starting point for further investigations into the emerging risks from climate change, and their impact on the operation of building stock. Future work could investigate direct mapping between climate risks and the financial value of properties. Originality/value – Findings of this paper can help professionals and building stockowners improve their understanding of climate change risks and the impact on their assets. This paper could also help these individuals to formulate appropriate adaptation and mitigation strategies.

Facilities ◽  
2018 ◽  
Vol 36 (9/10) ◽  
pp. 460-475
Author(s):  
Abdullah Alzahrani ◽  
Halim Boussabaine ◽  
Khalid Almarri

Purpose The different scenarios of climate change, such as floods, temperature change and storms, are considered the main drivers influencing the building sector. Understanding how and when these climatic risks will emerge, specifically financial risks, is pivotal in dealing with these risks and applying the adaptation and mitigation strategies so as to minimise the effects and damages. Thus, the purpose of this paper is to discover the financial risks emerging from climate change impact on the building sector and determine the timescale of occurrence for such risks. Design/methodology/approach The research methodology formulated in this study is founded on a systematic literature review and statistical analysis. Built on this, the potential financial risks emerging from climate change scenarios (CCS) were identified and designed as a questionnaire to collect data from UK expert professionals. Statistical methods were used to rank and compare the outcomes of the survey. Findings The research observed that around 40 per cent of the participants in this study indicated that one-third of the total identified financial risks (23 factors) would emerge within 5-10 years. The most important factors are increased insurance excess and additional expense in insuring buildings in flood risk zones, whilst the least important financial risks are inability to repay debts and un-insurability because of climate change. Research limitations/implications This study is limited to the UK, and regional implications are not covered. However, it is a starting point. Originality/value The main contribution of this research project is establishing and developing clusters of the potential risks emerging from CCS, which can assist professionals in the building sector in the management and development of strategies to cope with these emerging risks.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


2015 ◽  
Vol 7 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Ali Fares ◽  
Ripendra Awal ◽  
Samira Fares ◽  
Alton B. Johnson ◽  
Hector Valenzuela

The impact of potential future climate change scenarios on the irrigation water requirements (IRRs) of two major agricultural crops (coffee and seed corn) in Hawai'i was studied using the Irrigation Management System (IManSys) model. In addition to IRRs calculations, IManSys calculates runoff, deep percolation, canopy interception, and effective rainfall based on plant growth parameters, site specific soil hydrological properties, irrigation system efficiency, and long-term daily weather data. Irrigation water requirements of two crops were simulated using historical climate data and different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and +6.4 °C) and precipitation (±5, ±10 and ±20%) chosen based on the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under reference, B1, A1B1 and A1F1 emission scenarios. IRRs decreased as CO2 emission increased. The average percentage decrease in IRRs for seed corn is higher than that of coffee. However, runoff, rain canopy interception, and deep percolation below the root zone increased as precipitation increased. Canopy interception and drainage increased with increased CO2 emission. Evapotranspiration responded positively to air temperature rise, and as a result, IRRs increased as well. Further studies using crop models will predict crop yield responses to these different irrigation scenarios.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1120 ◽  
Author(s):  
Jie Li ◽  
Guan Liu ◽  
Qi Lu ◽  
Yanru Zhang ◽  
Guoqing Li ◽  
...  

Since climate change significantly affects global biodiversity, a reasonable assessment of the vulnerability of species in response to climate change is crucial for conservation. Most existing methods estimate the impact of climate change on the vulnerability of species by projecting the change of a species’ distribution range. This single-component evaluation ignores the impact of other components on vulnerability. In this study, Populus davidiana (David’s aspen), a tree species widely used in afforestation projects, was selected as the research subject under four future climate change scenarios (representative concentration pathway (RCP)2.6, RCP4.5, RCP6.0, and RCP8.5). Exposure components of range change as well as the degree of fragmentation, degree of human disturbance, and degree of protection were considered simultaneously. Then, a multicomponent vulnerability index was established to assess the effect of future climate change on the vulnerability of P. davidiana in China. The results show that the distribution range of P. davidiana will expand to the northwest of China under future climate change scenarios, which will lead to an increased degree of protection and a decreased degree of human disturbance, and hardly any change in the degree of fragmentation. The multicomponent vulnerability index values of P. davidiana under the four emission scenarios are all positive by 2070, ranging from 14.05 to 38.18, which fully indicates that future climate change will be conducive to the survival of P. davidiana. This study provides a reference for the development of conservation strategies for the species as well as a methodological case study for multicomponent assessment of species vulnerability to future climate change.


2014 ◽  
Vol 142 (10) ◽  
pp. 2013-2023 ◽  
Author(s):  
W. YU ◽  
P. DALE ◽  
L. TURNER ◽  
S. TONG

SUMMARYRoss River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Renato de Oliveira Fernandes ◽  
Cleiton da Silva Silveira ◽  
Ticiana Marinho de Carvalho Studart ◽  
Francisco de Assis de Souza Filho

ABSTRACT Climate changes can have different impacts on water resources. Strategies to adapt to climate changes depend on impact studies. In this context, this study aimed to estimate the impact that changes in precipitation, projected by Global Circulation Models (GCMs) in the fifth report by the Intergovernmental Panel on Climate Change (IPCC-AR5) may cause on reservoir yield (Q90) of large reservoirs (Castanhão and Banabuiú), located in the Jaguaribe River Basin, Ceará. The rainfall data are from 20 GCMs using two greenhouse gas scenarios (RCP4.5 and RCP8.5). The precipitation projections were used as input data for the rainfall-runoff model (SMAP) and, after the reservoirs’ inflow generation, the reservoir yields were simulated in the AcquaNet model, for the time periods of 2040-2069 and 2070-2099. The results were analyzed and presented a great divergence, in sign (increase or decrease) and in the magnitude of change of Q90. However, most Q90 projections indicated reduction in both reservoirs, for the two periods, especially at the end of the 21th century.


Sign in / Sign up

Export Citation Format

Share Document