Fire resistance of 3D printed concrete composite wall panels exposed to various fire scenarios

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thadshajini Suntharalingam ◽  
Irindu Upasiri ◽  
Perampalam Gatheeshgar ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

Purpose Fire safety of a building is becoming a prominent consideration due to the recent fire accidents and the consequences in terms of loss of life and property damage. ISO 834 standard fire test regulation and simulation cannot be applied to assess the fire performance of 3D printed concrete (3DPC) walls as the real fire time-temperature curves could be more severe, compared to standard fire curve, in terms of the maximum temperature and the time to reach that maximum temperature. Therefore, this paper aims to describe an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios. Design/methodology/approach The fire performance of 3DPC wall was traced through developing an appropriate heat transfer numerical model. The validity of the developed numerical model was confirmed by comparing the time-temperature profiles with available fire test results of 3DPC walls. A detailed parametric study of 140 numerical models were, subsequently, conducted covering different 3DPC wall configurations (i.e. solid, cavity and rockwool infilled cavity), five varying densities and consideration of four fire curves (i.e. standard, hydrocarbon fire, rapid and prolong). Findings 3DPC walls and Rockwool infilled cavity walls showed superior fire performance. Furthermore, the study indicates that the thermal responses of 3DPC walls exposed to rapid-fire is crucial compared to other fire scenarios. Research limitations/implications To investigate the thermal behaviour, ABAQUS allows performing uncoupled and coupled thermal analysis. Coupled analysis is typically used to investigate combined mechanical-thermal behaviour. Since, considered 3DPC wall configurations are non-load bearing, uncouple heat transfer analysis was performed. Time-temperature variations can be obtained to study the thermal response of 3DPC walls. Originality/value At present, there is limited study to analyse the behaviour of 3DPC composite wall panels in real fire scenarios. Hence, this paper presents an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios. This research is the first attempt to extensively study the fire performance of non-load bearing 3DPC walls.

Author(s):  
Thadshajini Suntharalingam ◽  
Perampalam Gatheeshgar ◽  
Irindu Upasiri ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

Purpose In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling. Design/methodology/approach Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels. Findings It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected. Originality/value Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.


2017 ◽  
Vol 8 (4) ◽  
pp. 354-376 ◽  
Author(s):  
Mohamed Rusthi ◽  
Poologanathan Keerthan ◽  
Mahen Mahendran ◽  
Anthony Ariyanayagam

Purpose This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations. Design/methodology/approach This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations. Findings The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios. Originality/value Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.


2020 ◽  
Vol 11 (4) ◽  
pp. 529-543
Author(s):  
Anjaly Nair ◽  
Osama (Sam) Salem

Purpose At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations. Design/methodology/approach To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column. Findings Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration. Originality/value According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.


Author(s):  
Kyung Soo Chung ◽  
Jae Sung Lee ◽  
Jong Eun Song ◽  
Woo Chul Kim ◽  
Heung Youl Kim ◽  
...  

New concrete filled double-tube (CFDT) sections consist of an inner and outer tube with fire protection mortar (FPM) filling the cavity between them and the inner tube also filled with concrete or not. An investigation into the fire performance of CFDT during the standard fire test is reported. Six full size FPM filled CFDT columns were designed for the fire tests. Detail failure modes of overall specimens and each component in the columns as well as temperature, deformation and fire endurance were presented. It showed that the fire resistance in the CFDT columns is significantly higher than that in concrete filled steel tubular (CFT) columns. Investigation into the fire performance of the columns reveals possible solutions to improve the fire resistance of CFT members.


2016 ◽  
Vol 7 (4) ◽  
pp. 349-364 ◽  
Author(s):  
H. Kinjo ◽  
T. Hirashima ◽  
S. Yusa ◽  
T. Horio ◽  
T. Matsumoto

Purpose Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of structural glued laminated timber beams not only during the heating phase during a 1-h standard fire in accordance with ISO 834-1 but also during the cooling phase. Design/methodology/approach Heating tests were carried out to confirm the charring rate and the temperature distribution in the cross-section of the beams. Loading tests under fire conditions were carried out to obtain the load-deformation behavior (i.e. the stiffness, maximum load and ductility) of the beam. Findings The temperature at the centroid reached approximately 30°C after 1 h and then increased gradually until reaching 110-200°C after 4 h, during the cooling phase. The maximum load of the specimen exposed to a 1-h standard fire was reduced to approximately 30 per cent of that of the specimen at ambient temperature. The maximum load of the specimen exposed to a 1-h standard fire and 3 h of natural cooling in the furnace was reduced to approximately 14 per cent. In case of taking into consideration of the strength reduction at elevated temperature, the reduction ratio of the calculated bending resistance agreed with that of the test results during not only heating phase but also cooling phase. Originality/value The results of this study state that it is possible to study on strength reduction in cooling phase for end of heating, timber structural which has not been clarified. It is believed that it is possible to appropriately evaluate the fire performance, including the cooling phase of the timber structural.


2019 ◽  
Vol 10 (2) ◽  
pp. 193-232 ◽  
Author(s):  
Mustafa Mahamid ◽  
Ataollah Taghipour Anvari ◽  
Ines Torra-Bilal ◽  
Tom Brindley ◽  
Michael McNallan

Purpose The purpose of this paper is to investigate different types of fire on structural steel members with damaged fireproofing. Two types of fire scenarios are considered, ASTM E119 fire and Hydrocarbon fire. In industrial facilities such as oil refineries, certain units maybe subjected to hydrocarbon fire, and its effect might be different than standard fire. The purpose of this study is to compare both types of fire scenarios on steel beams with damaged fireproofing and determine the fire rating of the damaged beams under each fire scenario. Design/methodology/approach The study is performed using computational methods, thermal-stress finite element analysis that is validated with experimental results. The results of practical beam sizes and typical applied loads in such structures have been plotted and compared with steel beams with non-damaged fireproofing. Findings The results show significant difference in the beam fire resistance between the two fire scenarios and show the fire resistance for beam under each case. The study provides percentage reduction in fire resistance under each case for the most commonly used cases in practice under different load conditions. Originality/value Extensive literature search has been performed by the authors, and few studies were found relevant to the topic. The question this study answers comes up regularly in practice. There are no standards to codes that address this issue.


2021 ◽  
Vol 13 (4) ◽  
pp. 2314
Author(s):  
Thadshajini Suntharalingam ◽  
Perampalam Gatheeshgar ◽  
Irindu Upasiri ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

3D Printed Concrete (3DPC) technology is currently evolving with high demand amongst researches and the integration of modular building system (MBS) with this technology would provide a sustainable solution to modern construction challenges. The use of lightweight concrete in such innovative construction methods offers lightweight structures with better heat and sound insulation compared to normal weight concrete. It is worth noting that fire and energy performance has become central to building design. However, there are limited research studies on the combined thermal energy and fire performance of 3DPC walls. Therefore, this study investigates fire performance of 20 numbers of varying 3DPC wall configurations using validated finite element models under standard fire conditions. The fire performance analysis demonstrated that 3DPC non-load bearing cavity walls have substantial resistance under standard fire load and its performance can be further improved with Rockwool insulation. There is significant improvement in terms of fire performance when the thickness of the walls increases in a parallel row manner. Previous thermal energy investigation also showed a lower U-value for increased thickness of similar 3DPC walls. This research concludes with a proposal of using 3DPC wall with Rockwool insulation for amplified combined thermal energy and fire performance to be used in MBS.


2019 ◽  
Vol 10 (1) ◽  
pp. 76-89
Author(s):  
Prabhakar Sathujoda ◽  
Paul Arnell ◽  
Andrew Deans

PurposeAs fire doors are passive fire protection parts, the doors have to be certified through standard fire tests. It is usual practice to perform the standard fire testing on the components which require the fire certification. However, some gas turbine enclosure doors are too large to test at the test facility and hence the fire resistance test is practically not possible. The purpose of this paper is to develop a reliable finite element model, validate the model using the specimen door test results and extend the method to actual gas turbine enclosure doors to support the fire certification.Design/methodology/approachFirst, the standard fire testing on enclosure door test specimen was carried out. Second, the finite element analysis model was built and tuned to match the standard fire test deflections, and finally, the same modelling technique was extended to model the actual gas turbine enclosure door to verify the results for fire certification process.FindingsGap analysis, a method of post processing is suggested for result analysis. It was found suitable to verify the gap openings which are required for A0 rated fire certification according to fire test procedure code and also to check the mechanical integrity of the enclosure door frame assembly.Originality/valueThe method presented in this work could be used as support information along with the test specimen results for A0 class fire rating certification of the doors according to International Maritime Organization Resolution MSC.307 (88) Annexure 1: Part 3.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhannad R. Alasiri ◽  
Mustafa Mahamid

Purpose Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire scenarios. As a result, the alternatives have been to either conduct experiments or find other tools to represent a real fire scenario. Therefore, the purpose of this paper is to understand the temperature effects resulted from a designed fire on steel beams and whether the standard fire curves represent a designed fire scenario. Design/methodology/approach Computational fluid dynamics (CFD) models were developed to simulate a designed fire scenario and to understand the structural responses on the beams under elevated temperatures. Consequently, the results obtained from the CFD models were compared with the results of three-dimensional (3D) non-linear finite element (FE) models developed by other researchers. The developed FE models were executed using a standard fire curve (ASTM E119). A parametric study including two case studies was conducted. Findings Results obtained from performing this study showed the importance of considering fire parameters such as fuel type and flame height during the thermal analysis compared to the standard fire curves, and this might lead to a non-conservative design as compared to the designed fire scenario. The studied cases showed that the steel beams experienced more degradation in their fire resistance at higher load levels under designed fires. Additionally, the models used the standard fire curves underestimated the temperatures at the early stages. Originality/value This paper shows results obtained by performing a comparison study of models used ASTM E119 curve and a designed fire scenario. The value of this study is to show the variability of using different fire scenarios; thus, more studies are required to see how temperature history curves can be used to represent real fire scenarios.


Sign in / Sign up

Export Citation Format

Share Document