Effects of material property variation in composite panels

2017 ◽  
Vol 89 (2) ◽  
pp. 274-279
Author(s):  
Thomas Wright ◽  
Imran Hyder ◽  
Mitchell Daniels ◽  
David Kim ◽  
John P. Parmigiani

Purpose The purpose of this paper is to determine which of the ten material properties of the Hashin progressive damage model significantly affect the maximum load-carrying ability of center-notched carbon fiber panels under in-plane tension and out-of-plane bending. Design/methodology/approach The approach used is to calculate the maximum load using a finite element model for a range of material property values as specified by a fraction factorial design. The finite element model used has been experimentally validated in prior work. Findings Results showed that for the laminates considered, at most three and as few as one of the ten Hashin material properties significantly affected the magnitude of the maximum load. Practical implications While the results of this paper only specifically apply to the laminates included in the study, the results suggest that, in general, only a small number of the Hashin material properties affect laminate load-carrying ability. Originality/value Knowing which properties are significant is of value in selecting materials to optimize performance and also in determining which properties need to be known to a high accuracy.

2012 ◽  
Vol 472-475 ◽  
pp. 761-766
Author(s):  
Yong Chuan Duan ◽  
Ying Ping Guan ◽  
Xing Dong Ma

A method based on artificial neural network (ANN) for predicting the effective material property is put forward in this paper. The finite element model of tensile test specimen is modeled in LS-DYNA code, which has transverse weld at the middle of the specimen and conforms to the ASTM specification. A statistical error analysis model is used to include the random phenomenon in the result of tensile test finite element model and verify the accuracy of finite element model (FEM) simulation. In order to study the effect of the processing parameter with design of experiment is followed, the simulation trail is conducted in all the levels of parameters. It is assumed that Hollomon’s law is followed by tailor welded blanks. The results obtained from fitting the post-process data of FEM by least square method are used to train and develop ANN model, the prediction average error of ANN model is acceptable compared with simulation trail.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2020 ◽  
Vol 11 (4) ◽  
pp. 579-589
Author(s):  
Muhamad Husnain Mohd Noh ◽  
Mohd Akramin Mohd Romlay ◽  
Chuan Zun Liang ◽  
Mohd Shamil Shaari ◽  
Akiyuki Takahashi

PurposeFailure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis.Design/methodology/approachThe bootstrap resampling method is employed in S-version finite element model (S-FEM) to generate the random variables in this simulation analysis. The SIF analysis studies are promoted by bootstrap S-version Finite Element Model (BootstrapS-FEM). Virtual crack closure-integral method (VCCM) is an important concept to compute the energy release rate and SIF. The semielliptical crack shape is applied with different crack shape aspect ratio in this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model.FindingsThe mean of BootstrapS-FEM is calculated from 100 samples by the resampling method. The bounds are computed based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is validated with Newman–Raju solution and deterministic S-FEM within 95 percent confidence bounds. All possible values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred to as point estimation. The Newman–Raju solution and deterministic S-FEM values are within the 95 percent confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction with less than 6 percent of percentage error.Originality/valueThe bootstrap resampling method is employed in S-FEM to generate the random variables in this simulation analysis.


2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


Author(s):  
X. G. Tan ◽  
R. Kannan ◽  
Andrzej J. Przekwas

Until today the modeling of human body biomechanics poses many great challenges because of the complex geometry and the substantial heterogeneity of human body. We developed a detailed human body finite element model in which the human body is represented realistically in both the geometry and the material properties. The model includes the detailed head (face, skull, brain, and spinal cord), the skeleton, and air cavities (including the lung). Hence it can be used to accurately acquire the stress wave propagation in the human body under various loading conditions. The blast loading on the human surface was generated from the simulated C4 blast explosions, via a novel combination of 1-D and 3-D numerical formulations. We used the explicit finite element solver in the multi-physics code CoBi for the human body biomechanics. This is capable of solving the resulting large system containing millions of unknowns in an extremely scalable fashion. The meshes generated for these simulations are of good quality. This enables us to employ relatively large time step sizes, without resorting to the artificial time scaling treatment. In order to study the human body dynamic response under the blast loading, we also developed an interface to apply the blast pressure loading on the external human body surface. These newly developed models were used to conduct parametric simulations to find out the brain biomechanical response when the blasts impact the human body. Under the same blast loading we also show the differences of brain response when having different material properties for the skeleton, the existence of other body parts such as torso.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


2014 ◽  
Vol 34 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Gang Liu ◽  
Wei Tang ◽  
Ying-Lin Ke ◽  
Qing-Liang Chen ◽  
Yunbo Bi

Purpose – The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic riveting in panel assemblies, the traditional approach of determination of pre-joining processes entirely rests on the experience of workers, which leads to the improper number, location and sequence of pre-joining, the low quality stability and the high repair rate in most cases. Design/methodology/approach – The clearances computation with the complete finite element model for every process combination is time-consuming. Therefore a fast pre-joining processes optimization model (FPPOM) is proposed. This model treats both the measured initial clearances and the stiffness matrices of key points of panels as an input; considers the permissive clearances as an evaluation criterion; regards the optimal number, location and sequence as an objective; and takes the neighborhood-search-based adaptive genetic algorithm as a solution. Findings – A comparison between the FPPOM and complete finite element model with clearances (CFEMC) was made in practice. Further, the results indicate that running the FPPOM is time-saving by >90 per cent compared with the CFEMC. Practical implications – This paper provides practical insights into realizing the pre-joining processes optimization quickly. Originality/value – This paper is the first to propose the FPPOM, which could simplify the processes, reduce the degrees of freedom of nodes and conduct the manufacturers to standardized manipulations.


2006 ◽  
Vol 129 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Sathyan Subbiah ◽  
Shreyes N. Melkote

Orthogonal cutting experiments using a quick-stop device are performed on Al2024-T3 and OFHC copper to study the chip–workpiece interface in a scanning electron microscope. Evidence of ductile tearing ahead of the tool at cutting speeds of 150m∕min has been found. A numerical finite element model is then developed to study the energy consumed in material separation in micro-cutting. The ductile fracture of Al2024-T3 in a complex stress state ahead of the tool is captured using a damage model. Chip formation is simulated via the use of a sacrificial layer and sequential elemental deletion in this layer. Element deletion is enforced when the accumulated damage exceeds a predetermined value. A Johnson–Cook damage model that is load history dependent and with strain-to-fracture dependent on stress, strain rate, and temperature is used to model the damage. The finite element model is validated using the cutting forces obtained from orthogonal micro-cutting experiments. Simulations are performed over a range of uncut chip thickness values. It is found that at lower uncut chip thickness values, the percentage of energy expended in material separation is higher than at higher uncut chip thicknesses. This work highlights the importance of the energy associated with material separation in the nonlinear scaling effect of specific cutting energy in micro-cutting.


Sign in / Sign up

Export Citation Format

Share Document