Analysis of stress intensity factor for fatigue crack using bootstrap S-version finite element model

2020 ◽  
Vol 11 (4) ◽  
pp. 579-589
Author(s):  
Muhamad Husnain Mohd Noh ◽  
Mohd Akramin Mohd Romlay ◽  
Chuan Zun Liang ◽  
Mohd Shamil Shaari ◽  
Akiyuki Takahashi

PurposeFailure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis.Design/methodology/approachThe bootstrap resampling method is employed in S-version finite element model (S-FEM) to generate the random variables in this simulation analysis. The SIF analysis studies are promoted by bootstrap S-version Finite Element Model (BootstrapS-FEM). Virtual crack closure-integral method (VCCM) is an important concept to compute the energy release rate and SIF. The semielliptical crack shape is applied with different crack shape aspect ratio in this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model.FindingsThe mean of BootstrapS-FEM is calculated from 100 samples by the resampling method. The bounds are computed based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is validated with Newman–Raju solution and deterministic S-FEM within 95 percent confidence bounds. All possible values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred to as point estimation. The Newman–Raju solution and deterministic S-FEM values are within the 95 percent confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction with less than 6 percent of percentage error.Originality/valueThe bootstrap resampling method is employed in S-FEM to generate the random variables in this simulation analysis.

2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2014 ◽  
Vol 900 ◽  
pp. 742-745 ◽  
Author(s):  
Yao Jie He ◽  
Bai Jing Qiu ◽  
Ya Fei Yang

In order to attenuate the deformation of spray boom, a finite element model built based on ANSYS, according to the reasults of numerical modal analysis and modal texting, the reliability of the finite element model was affirmed. Then, an isolator was introduced between spray boom and frame, a frame-isolator-spray boom model was built in ADAMS. The effect of the isolators which have different parameters was research, the reasult shows: The isolator has much effect on attenuating spray booms deformation, the stiffness of isolators spring dampers has little effect on spray booms deformation, but the damping of isolators spring dampers has effect on spray booms deformation.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


2014 ◽  
Vol 34 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Gang Liu ◽  
Wei Tang ◽  
Ying-Lin Ke ◽  
Qing-Liang Chen ◽  
Yunbo Bi

Purpose – The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic riveting in panel assemblies, the traditional approach of determination of pre-joining processes entirely rests on the experience of workers, which leads to the improper number, location and sequence of pre-joining, the low quality stability and the high repair rate in most cases. Design/methodology/approach – The clearances computation with the complete finite element model for every process combination is time-consuming. Therefore a fast pre-joining processes optimization model (FPPOM) is proposed. This model treats both the measured initial clearances and the stiffness matrices of key points of panels as an input; considers the permissive clearances as an evaluation criterion; regards the optimal number, location and sequence as an objective; and takes the neighborhood-search-based adaptive genetic algorithm as a solution. Findings – A comparison between the FPPOM and complete finite element model with clearances (CFEMC) was made in practice. Further, the results indicate that running the FPPOM is time-saving by >90 per cent compared with the CFEMC. Practical implications – This paper provides practical insights into realizing the pre-joining processes optimization quickly. Originality/value – This paper is the first to propose the FPPOM, which could simplify the processes, reduce the degrees of freedom of nodes and conduct the manufacturers to standardized manipulations.


2017 ◽  
Vol 89 (2) ◽  
pp. 274-279
Author(s):  
Thomas Wright ◽  
Imran Hyder ◽  
Mitchell Daniels ◽  
David Kim ◽  
John P. Parmigiani

Purpose The purpose of this paper is to determine which of the ten material properties of the Hashin progressive damage model significantly affect the maximum load-carrying ability of center-notched carbon fiber panels under in-plane tension and out-of-plane bending. Design/methodology/approach The approach used is to calculate the maximum load using a finite element model for a range of material property values as specified by a fraction factorial design. The finite element model used has been experimentally validated in prior work. Findings Results showed that for the laminates considered, at most three and as few as one of the ten Hashin material properties significantly affected the magnitude of the maximum load. Practical implications While the results of this paper only specifically apply to the laminates included in the study, the results suggest that, in general, only a small number of the Hashin material properties affect laminate load-carrying ability. Originality/value Knowing which properties are significant is of value in selecting materials to optimize performance and also in determining which properties need to be known to a high accuracy.


2012 ◽  
Vol 151 ◽  
pp. 484-489 ◽  
Author(s):  
Jie Fang Xing ◽  
Jie Zhang ◽  
Lu Jun He

Introduce some basic knowledge, methods and theory of using the finite element software ANSYS to carry out contact analysis, and then establish the contact simulation analysis finite element model for CTP imaging drum and plate by using the software ANSYS. A numerical simulation analysis on the imaging drum and the plate indicates that the analysis results are consistent with the experimental results, so as to lay the foundation for the reliability and stability of dynamic design and optimization design of CTP imaging drum.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2154
Author(s):  
Vasyl Varvolik ◽  
Dmytro Prystupa ◽  
Giampaolo Buticchi ◽  
Sergei Peresada ◽  
Michael Galea ◽  
...  

To improve the design of electric drives and to better predict the system performance, numerical simulation has been widely employed. Whereas in the majority of the approaches, the machines and the power electronics are designed and simulated separately, to improve the fidelity, a co-simulation should be performed. This paper presents a complete coupled co-simulation model of synchronous reluctance machine (SynRel) drive, which includes the finite element model of the SynRel, the power electronics inverter, the control system, and application examples. The model of SynRel is based on a finite element model (FEM) using Simcenter MagNet. The power electronics inverter is built using PLECS Blockset, and the drive control model is built in Simulink environment, which allows for coupling between MagNet and PLECS. The proposed simulation model provides high accuracy thanks to the complete FEA-based model fed by actual inverter voltage. The comparison of the simulation results with experimental measurements shows good correspondence.


Author(s):  
Qiwei Yang ◽  
Derrick Tate ◽  
Sang-Wook Bae

Although a large number of crash tests have been performed between passenger cars and rigid fixed traffic signs, the number of real tests focusing on crashworthiness of portable roll-up signs is still limited. Because a standard, portable roll-up sign contains at least three kinds of dissimilar materials, such as steel for the base, fiberglass for the batten, vinyl for the sign, and because the sign’s configuration is more complicated than a rigid fixed sign, it is important to simulate the behavior of portable roll-up signs in collision. In this paper, a fine-mesh finite element model precisely representing the portable roll-up sign was created and used together with a car model to simulate the process of impact with 0 and 90 degree orientation. The simulation was performed using LS-DYNA software. Techniques for creating the finite element model were discussed. Afterwards this finite element model, being validated and verified through real tests, can be used for parametric and/or robust design.


Sign in / Sign up

Export Citation Format

Share Document