Mapping the field: a bibliometric analysis of land use and carbon emissions (LUCE) research from 1987 to 2018

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chunhui Liu ◽  
Kongqing Li

PurposeOne of the most critical and active research areas in the field of climate change in recent years has been the interaction between land use and carbon emissions (LUCE). As there is a lack of data to represent the knowledge structure and evolution of LUCE between 1987 and 2018, this paper turned to CiteSpace in order to identify and visualize the cited references and keyword networks, the distribution of categories and countries and highly cited references in connection to LUCE research. Two indicators, betweenness centrality (BC) and citation burst (CB) embedded in CiteSpace, were utilized to investigate the knowledge structures.Design/methodology/approachTwo indicators, BC and CB embedded in CiteSpace, were introduced to investigate the knowledge structures.FindingsFirstly, pre-2000 papers provide the main theoretical foundation for LUCE research, and the innovation of computer technology also provides new ideas and methods for related research. Secondly, greenhouse gas emissions from agriculture are attracting more attention. As agriculture also involves food security, the pressure on agriculture to reduce carbon is enormous, and more research and policy investment will be needed in the future. Thirdly, although the natural sciences ranked highly on BC detection, social and humanities sciences have contributed more to the LUCE research with an increasing emphasis on regional and global governance to combat climate change. Finally, keen interest in carbon emissions and sustainable development in developed countries, particularly in Europe, has led to a large number of LUCE studies. Research being done in developing countries that are most affected by climate change is also outstanding.Originality/valueThe results collected will assist scientific researchers to better understand the research status and frontier trends in this sector, thus permitting researchers to comprehend current research interests in the LUCE analysis field and providing useful information for further investigation and publication strategies.

2020 ◽  
Vol 27 (5) ◽  
pp. 1065-1092 ◽  
Author(s):  
Wei Lu ◽  
Vivian W.Y. Tam ◽  
Heng Chen ◽  
Lei Du

Purpose Addressing global warming challenge, carbon emissions reduction potential of the construction industry has received additional attentions. The decoupling of construction industry and carbon emissions through policies, technologies and model innovations is an effective way for reducing environmental pollution and achieve eco-urban target. The paper aims to discuss these issues. Design/methodology/approach Within the scope of green building carbon emissions (GB-CO2) research, a large number of scientific literature has been published in construction discipline over the past few decades. However, it seems that a systematic summary of strategies, techniques, models and scientific discussion of future direction of GB-CO2 is lacking. Therefore, this paper carries out data mining on authoritative journals, identified the key research topics, active research areas and further research trends through visualization studies. Findings This study contributes to the body of knowledge in GB-CO2 by critically reviewing and summarizing: professional high-quality journals have a greater influence in the scope of research, developed countries and developing countries are all very concerned about sustainable buildings, and the current hot topics of research focus on the application of the life cycle models, energy efficiency, environmental performance of concrete material, etc. Moreover, further research areas that could expand the knowledge of cross-national long-term carbon mechanisms, develop comprehensive life cycle carbon emissions assessment models, build technical standards and tests for the sustainable building material and systems, and exploit multi-objective decision models considering decarbonizing design and renewable energy. Originality/value This study is of value in systematic insight the state-of-the-art of GB-CO2 research in the more recent decade. A more vividly and effectively method is documented in extending the traditional bibliometric review to a deeper discussion. This study can also benefit construction practitioners by providing them a focused perspective of strategy and technologies innovations for emerging practices in green building projects.


2019 ◽  
Vol 12 (1) ◽  
pp. 525-539 ◽  
Author(s):  
Roger Cremades ◽  
Philipp S. Sommer

Abstract. Cities are fundamental to climate change mitigation, and although there is increasing understanding about the relationship between emissions and urban form, this relationship has not been used to provide planning advice for urban land use so far. Here we present the Integrated Urban Complexity model (IUCm 1.0) that computes “climate-smart urban forms”, which are able to cut emissions related to energy consumption from urban mobility in half. Furthermore, we show the complex features that go beyond the normal debates about urban sprawl vs. compactness. Our results show how to reinforce fractal hierarchies and population density clusters within climate risk constraints to significantly decrease the energy consumption of urban mobility. The new model that we present aims to produce new advice about how cities can combat climate change.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ghasson Shabha ◽  
Francesca Barber ◽  
Paul Laycock

PurposeThere are 29 million homes in the UK, accounting for 14% of the UK's energy consumption. This is given that UK has one of the highest water and energy demands in Europe which needs to be addressed according to the Committee on Climate Change (CCC). Smart homes technology holds a current perception that it is principally used by “tech-savvy” users with larger budgets. However, smart home technology can be used to control water, heat and energy in the entire house. This paper investigates how smart home technology could be effectively utilised to aid the UK government in meeting climate change targets and to mitigate the environmental impact of a home in use towards reducing carbon emissions.Design/methodology/approachBoth primary and secondary data were sought to gain insight into the research problem. An epistemological approach to this research is to use interpretivism to analyse data gathered via a semi-structured survey. Two groups of participants were approached: (1) professionals who are deemed knowledgeable about smart home development and implementation and (2) users of smart home technology. A variety of open-ended questions were formulated, allowing participants to elaborate by exploring issues and providing detailed qualitative responses based on their experience in this area which were interpreted quantitatively for clearer analysis.FindingsWith fossil fuel reserves depleting, there is an urgency for renewable, low carbon energy sources to reduce the 5 tonnes annual carbon emissions from a UK household. This requires a multi-faceted and a multimethod approach, relying on the involvement of both the general public and the government in order to be effective. By advancing energy grids to make them more efficient and reliable, concomitant necessitates a drastic change in the way of life and philosophy of homeowners when contemplating a reduction of carbon emissions. If both parties are able to do so, the UK is more likely to reach its 2050 net-zero carbon goal. The presence of a smart meter within the household is equally pivotal. It has a positive effect of reducing the amount of carbon emissions and hence more need to be installed.Research limitations/implicationsFurther research is needed using a larger study sample to achieve more accurate and acceptable generalisations about any future course of action. Further investigation on the specifics of smart technology within the UK household is also needed to reduce the energy consumption in order to meet net-zero carbon 2050 targets due to failures of legislation.Practical implicationsFor smart homes manufacturers and suppliers, more emphasis should be placed to enhance compatibility and interoperability of appliances and devices using different platform and creating more user's friendly manuals supported by step-by-step visual to support homeowners in the light of the wealth of knowledge base generated over the past few years. For homeowners, more emphasis should be placed on creating online knowledge management platform easily accessible which provide virtual support and technical advice to home owners to deal with any operational and technical issues or IT glitches. Developing technical design online platform for built environment professionals on incorporating smart sensors and environmentally beneficial technology during early design and construction stages towards achieving low to zero carbon homes.Originality/valueThis paper bridges a significant gap in the body of knowledge in term of its scope, theoretical validity and practical applicability, highlighting the impact of using smart home technology on the environment. It provides an insight into how the UK government could utilise smart home technology in order to reduce its carbon emission by identifying the potential link between using smart home technology and environmental sustainability in tackling and mitigating climate change. The findings can be applied to other building types and has the potential to employ aspects of smart home technology in order to manage energy and water usage including but not limited to healthcare, commercial and industrial buildings.


Author(s):  
Sezer Kahyaoglu Bozkus ◽  
Hakan Kahyaoglu ◽  
Atahirou Mahamane Mahamane Lawali

Purpose The purpose of this study aims to analyze the dynamic behavior of the relationship between atmospheric carbon emissions and the Organisation for Economic Co-operation and Development (OECD) industrial production index (IPI) in the short and long term by applying multifractal techniques. Design/methodology/approach Multifractal de-trended cross-correlation technique is used for this analysis based on the relevant literature. In addition, it is the most widely used approach to estimate multifractality because it generates robust empirical results against non-stationarities in the time series. Findings It is revealed that industrial production causes long and short term environmental costs. The OECD IPI and atmospheric carbon emissions were found to have a strong correlation between the time domain. However, this relationship does not mostly take into account the frequency-based correlations with the tail effects caused by shocks that are effective on the economy. In this study, the long-term dependence of the relationship between the OECD IPI and atmospheric carbon emissions differs from the correlation obtained by linear methods, as the analysis is based on the frequency. The major finding is that the Hurst coefficient is in the range 0.40-0.75 indicating. Research limitations/implications In this study, the local singular behavior of the time-series is analyzed to test for the multifractality characteristics of the series. In this context, the scaling exponents and the singularity spectrum are obtained to determine the origins of this multifractality. The multifractal time series are defined as the set of points with a given singularity exponent a where this exponent a is illustrated as a fractal with fractal dimension f(α). Therefore, the multifractality term indicates the existence of fluctuations, which are non-uniform and more importantly, their relative frequencies are also scale-dependent. Practical implications The results provide information based on the fluctuation in IPI, which determines the main conjuncture of the economy. An optimal strategy for shaping the consequences of climate change resulting from industrial production activities will not only need to be quite comprehensive and global in scale but also policies will need to be applicable to the national and local conditions of the given nation and adaptable to the needs of the country. Social implications The results provide information for the analysis of the environmental cost of climate change depending on the magnitude of the impact on the total supply. In addition to environmental problems, climate change leads to economic problems, and hence, policy instruments are introduced to fight against the adverse effects of it. Originality/value This study may be of practical and technical importance in regional climate change forecasting, extreme carbon emission regulations and industrial production resource management in the world economy. Hence, the major contribution of this study is to introduce an approach to sustainability for the analysis of the environmental cost of growth in the supply side economy.


2019 ◽  
Vol 28 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Ruiti Aretaake

Purpose The purpose of this paper is to report how the encouragement of collaboration between local stakeholders, communities and the government helps slow the great impact of disaster risks and the impacts of climate change on livelihoods and lives. It also describes how promoting the acceptance and contributions of traditional knowledge in this effort owing to their accessibility and affordability and their cultural compatibility with the community contributes to addressing the challenges in Kiribati faces. Design/methodology/approach Drawing on government and NGO reports, as well as other documentary sources, this paper examines the nature of current efforts and the state of community practices in Kiribati. Findings Disaster risks and climate change are currently destroying all facets of I-Kiribati life. It is, therefore, imperative that a holistic form of partnership bringing together both state and non-state actors and that through this community awareness be implemented within the Kiribati policies and community development programs to improve dissemination of prevention and risk reduction programs, while maintaining the cultural infrastructure. Social implications Access to modern technologies and factors which inhibit local utilization of natural resources as well as traditional Kiribati beliefs about environment issues and impacts on people illustrate the potential and difficulties of convergence of new ideas with traditional knowledge. Originality/value The Kiribati “Frontline” project is an activity which has been led by the Foundation for the Peoples of the South Pacific Kiribati, both stimulated and in part subsidized by the Global Network for Disaster Reduction that provided financial support to work with rural and urban communities on mitigating disaster risks and climate change issues.


Subject West Africa cocoa prospects. Significance Global cocoa markets are expected to remain oversupplied during the 2017/18 planting season, with Ivory Coast and Ghana -- which together account for 60% of world supplies -- expected to produce 1.9 million tonnes and 850,000 tonnes respectively. Thereafter, the slump in prices could deter investments in plantations, particularly in Ivory Coast where the farm gate price has been slashed. This could could sow the seeds of a new boom cycle -- especially if it compounds longer-term supply bottlenecks that have resulted from underinvestment in rehabilitating ageing and diseased tree stocks. Impacts Deforestation from cocoa farming will come under increased scrutiny as a result of international goals to combat climate change. Health trends in Western markets could reduce structural appetite for cocoa products amid flagging demand in emerging markets. Farmers are likely to switch to other crops like rubber and palm oil if prices fail to recover quickly.


Author(s):  
Sirkku Juhola

Purpose In the past 10 years, most countries and cities have published a national adaptation strategy that outlines the strategic approach to reduce the vulnerability to climate change and to adapt to the impacts of it. The existence of an adaptation strategy does not, however, equal implementation of adaptation and the fact that adaptation is taking place across multiple levels also poses new challenges to its efficient implementation. The literature on barriers of adaptation has been increasing rapidly, questioning whether there is a misconception that barriers to implementation can be solved at the local level. Design/methodology/approach This paper analyses the implementation of adaptation strategies across multiple levels of governance by focusing on the land use planning in Finland. The case study examines the implementation of adaptation in the metropolitan region of Helsinki through a policy document analysis. Findings The conclusions highlight that there are barriers at the local level that emerge from the existing governance structures and cannot be solved by the local level alone. There needs to be a further recognition that coordination across levels of governance is a factor in overcoming barriers. Originality/value So far, there are very few studies that have analysed barriers in relation to the implementation of adaptation in a multi-level setting, and none in the land use sector, which is inherently hierarchical in nature.


2002 ◽  
Vol 29 (2) ◽  
pp. 134-153 ◽  
Author(s):  
Björn Malmqvist ◽  
Simon Rundle

Running waters are perhaps the most impacted ecosystem on the planet as they have been the focus for human settlement and are heavily exploited for water supplies, irrigation, electricity generation, and waste disposal. Lotic systems also have an intimate contact with their catchments and so land-use alterations affect them directly. Here long-term trends in the factors that currently impact running waters are reviewed with the aim of predicting what the main threats to rivers will be in the year 2025. The main ultimate factors forcing change in running waters (ecosystem destruction, physical habitat and water chemistry alteration, and the direct addition or removal of species) stem from proximate influences from urbanization, industry, land-use change and water-course alterations. Any one river is likely to be subjected to several types of impact, and the management of impacts on lotic systems is complicated by numerous links between different forms of anthropogenic effect. Long-term trends for different impacts vary. Concentrations of chemical pollutants such as toxins and nutrients have increased in rivers in developed countries over the past century, with recent reductions for some pollutants (e.g. metals, organic toxicants, acidification), and continued increases in others (e.g. nutrients); there are no long-term chemical data for developing countries. Dam construction increased rapidly during the twentieth century, peaking in the 1970s, and the number of reservoirs has stabilized since this time, whereas the transfer of exotic species between lotic systems continues to increase. Hence, there have been some success stories in the attempts to reduce the impacts from anthropogenic impacts in developed nations. Improvements in the pH status of running waters should continue with lower sulphurous emissions, although emissions of nitrous oxides are set to continue under current legislation and will continue to contribute to acidification and nutrient loadings. Climate change also will impact running waters through alterations in hydrology and thermal regimes, although precise predictions are problematic; effects are likely to vary between regions and to operate alongside rather than override those from other impacts. Effects from climate change may be more extreme over longer time scales (>50 years). The overriding pressure on running water ecosystems up to 2025 will stem from the predicted increase in the human population, with concomitant increases in urban development, industry, agricultural activities and water abstraction, diversion and damming. Future degradation could be substantial and rapid (c. 10 years) and will be concentrated in those areas of the world where resources for conservation are most limited and knowledge of lotic ecosystems most incomplete; damage will centre on lowland rivers, which are also relatively poorly studied. Changes in management practices and public awareness do appear to be benefiting running water ecosystems in developed countries, and could underpin conservation strategies in developing countries if they were implemented in a relevant way.


2011 ◽  
Vol 8 (5) ◽  
pp. 9709-9746 ◽  
Author(s):  
S. Kloster ◽  
N. M. Mahowald ◽  
J. T. Randerson ◽  
P. J. Lawrence

Abstract. Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire behavior will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075–2099) fire carbon emissions by 17 and 62% compared to present day (1985–2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projection. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by −5%. Changes in human ignition led to an increase in 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by −6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.


Sign in / Sign up

Export Citation Format

Share Document