Improvement of inter layer dielectric crack for LQFP C90FG wafer technology devices in copper wire bonding process

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiuqian Wu ◽  
Dehong Ye ◽  
Hanmin Zhang ◽  
Li Song ◽  
Liping Guo

Purpose This paper aims to investigate the root causes of and implement the improvements for the inter layer dielectric (ILD) crack for LQFP C90FG (CMOS90 Floating Gate) wafer technology devices in copper wire bonding process. Design/methodology/approach Failure analysis was conducted including cratering, scanning electron microscopy inspection and focus ion beam cross-section analysis, which showed ILD crack. Root cause investigation of ILD crack rate sudden jumping was carried out with cause-and-effect analysis, which revealed the root cause is shallower lead frame down-set. ILD crack mechanism deep-dive on ILD crack due to shallower lead frame down-set, which revealed the mechanism is lead frame flag floating on heat insert. Further investigation and energy dispersive X-ray analysis found the Cu particles on heat insert is another factor that can result in lead frame flag floating. Findings Lead frame flag floating on heat insert caused by shallower lead frame down-set or foreign matter on heat insert is a critical factor of ILD crack that has never been revealed before. Weak wafer structure strength caused by thinner wafer passivation1 thickness and sharp corner at Metal Trench (compared with the benchmarking fab) are other factors that can impact ILD crack. Originality/value For ILD crack improvement in copper wire bonding, besides the obvious factors such as wafer structure and wire bonding parameters, also should take other factors into consideration including lead frame flag floating on heat insert and heat insert maintenance.

Author(s):  
Huixian Wu ◽  
Arthur Chiang ◽  
David Le ◽  
Win Pratchayakun

Abstract With gold prices steadily going up in recent years, copper wire has gained popularity as a means to reduce cost of manufacturing microelectronic components. Performance tradeoff aside, there is an urgent need to thoroughly study the new technology to allay any fear of reliability compromise. Evaluation and optimization of copper wire bonding process is critical. In this paper, novel failure analysis and analytical techniques are applied to the evaluation of copper wire bonding process. Several FA/analytical techniques and FA procedures will be discussed in detail, including novel laser/chemical/plasma decapsulation, FIB, wet chemical etching, reactive ion etching (RIE), cross-section, CSAM, SEM, EDS, and a combination of these techniques. Two case studies will be given to demonstrate the use of these techniques in copper wire bonded devices.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000638-000649 ◽  
Author(s):  
Bob Chylak ◽  
Horst Clauberg ◽  
John Foley ◽  
Ivy Qin

During the past two years copper wire bonding has entered high volume manufacturing at a number of leading edge OSATs and IDMs. Usage of copper wire has achieved 20% market share and is expected to exceed 50% within three years. Products spanning the range from low pin count devices with relatively large wire diameter to FPGA's with nearly one thousand wires at 20 μm or even 18 μm wire are now using copper wire. This paper will discuss the requirements for developing a robust copper wire bonding process and then moving it to high volume manufacturing. Process optimization begins with the selection of the appropriate wire diameter, ball diameter, bonding tool and bonding process type. These are functions not only of the bond pad opening, but also of the pad aluminum thickness and relative sensitivity of the pad to damage. Proper optimization depends on the availability of new and modified bond quality metrologies, such as extensive reliance on cross-sectioning and intermetallic coverage measurements. The bonding window of a copper wire bonding process is defined in substantially new terms compared to optimization in gold wire bonding. Once an optimized process has been developed in the lab on a single bonder, it needs to be verified. Copper wire bond processes are much less forgiving with respect to the acceptable variability on the manufacturing floor. To ensure that the process is stable, a low volume pre-manufacturing test is highly recommended. This not only makes sure that the process is stable across multiple bonders, but also ensures the adequacies of manufacturing controls, incoming materials quality and sufficient equipment calibration and maintenance procedures.


2016 ◽  
Vol 106 (07-08) ◽  
pp. 512-519
Author(s):  
M. Brökelmann ◽  
A. Unger ◽  
T. Meyer ◽  
S. Althoff ◽  
W. Prof. Sextro ◽  
...  

Ziel dieses Innovationsprojekts des Spitzenclusters „it’s OWL – Intelligente Technische Systeme OstWestfalen-Lippe“ ist die Entwicklung von selbstoptimierenden Verfahren, um unter variablen Produktionsbedingungen zuverlässige Kupferbondverbindungen herstellen zu können. Die Ultraschall-Drahtbondmaschine erhält die Fähigkeit, sich automatisch an veränderte Bedingungen anzupassen. Hierzu wird der gesamte Prozess der Ultraschall-Verbindungsbildung modelliert und neueste Verfahren der Selbstoptimierung angewandt. Die Evaluierung erfolgt anhand eines Prototypen in Form einer modifizierten Bondmaschine.   It is the aim of this innovation-project to develop a self-optimization system for ultrasonic copper wire bonding. It is part of the leading edge cluster “it’s OWL”. The bonding machine will be able to react autonomously to changing boundary conditions to ensure constant and reliable bonding results. For this, the hole bonding process is modeled in great detail and newest self-optimization techniques are utilized. A prototype-system incorporated in a serial machine is used for evaluation.


Sign in / Sign up

Export Citation Format

Share Document