Analysis of radiative magneto nano pseudo-plastic material over three dimensional nonlinear stretched surface with passive control of mass flux and chemically responsive species

2020 ◽  
Vol 16 (5) ◽  
pp. 1061-1083 ◽  
Author(s):  
Muhammad Sohail ◽  
Rabeeah Raza

PurposeThe current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport mechanisms. Buongiorno model is presented to view the influence of nanoparticles in fluid flow. Scrutiny has been conceded under the action of the transversely smeared magnetic field. Heat and mass relocation exploration are conducted in the companionship of radiation effects and actinic compensation.Design/methodology/approachSimilarity variable is designated to transmute nonlinear partial differential equations of conservation laws of mass, momentum, energy and species into ordinary dimensional expressions. These constitutive and complicated ordinary differential expressions assessing the flow situation are handled efficaciously by manipulating Runge–Kutta–Fehlberg procedure (RK-5) with shooting routine.FindingsThe graphical demonstration is deliberated to scrutinize the variation in velocity, temperature and concentration profiles with respect to flow regulating parameters. Numerical data are displayed through tables in order to surmise variation in skin friction coefficient and Nusselt number. The augmenting values of fluid parameter and magnetic parameter reduces the horizontal fluid velocity, whereas normal velocity upsurges for mounting values of stretching ratio parameter. Moreover, mounting values of radiation parameter and thermophoresis parameter upsurges the temperature profile, whereas, growing values of Prandtl number lessen the temperature field.Practical implicationsThe current exploration is used in many industrial and engineering applications in order to discuss the transport phenomenon.Originality/valueFlow over a nonlinear stretched surface has numerous applications in the industry. The present attempt examines the combined influence of various physical characteristics for the flow of Williamson fluid and no such attempt exist in the available literature.

Author(s):  
Umar Khan ◽  
Naveed Ahmed ◽  
Bandar Bin-Mohsen ◽  
Syed Tauseef Mohyud-Din

Purpose The purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to formulate the problem. Furthermore, in energy equation, the non-linear thermal radiation has also been incorporated. The equations governing the flow are transformed into a set of ordinary differential equations by using suitable similarity transforms. The reduced system of equations is then solved numerically using a well-known Runge–Kutta–Fehlberg method coupled with a shooting technique. The influence of parameters involved on velocity, temperature and concentration profiles is highlighted with the help of a graphical aid. Expressions for skin-friction coefficient, local Nusselt number and Sherwood number are obtained and presented graphically. Design/methodology/approach Numerical solution of the problem is obtained using the well-known Runge–Kutta–Fehlberg method. Findings The analysis provided gives a clear description that the increase in m and magnetic parameter M results in an increased velocity profile. Both these parameters normalize the velocity field. Radiation parameter, Rd, increases the temperature and concentration of the system so does the temperature ratio θω reduces the heat transfer rate at the wall for both stretching and shrinking wedge. Originality/value In the study presented, the flow of nanofluid over a moving permeable wedge is considered. The solution of the equations governing the flow is presented numerically. For the validity of results obtained, a comparison is also presented with already existing results. To the best of the authors’ knowledge, this investigation is the first of its kind on the said topic.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


NANO ◽  
2013 ◽  
Vol 08 (01) ◽  
pp. 1350001 ◽  
Author(s):  
P. LOGANATHAN ◽  
P. NIRMAL CHAND ◽  
P. GANESAN

An exact analysis is carried out to study the radiation effects on an unsteady natural convective flow of a nanofluid past an impulsively started infinite vertical plate. The nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The partial differential equations governing the flow are solved by Laplace transform technique. The influence of various parameters on velocity and temperature profiles, as well as Nusselt number and skin-friction coefficient, are examined and presented graphically. An increase in radiation parameter and time leads to fall in temperature of the fluid. The presence of nanoparticles and thermal radiation increases the rate of heat transfer and skin friction. The effect of heat transfer is found to be more pronounced in silver water nanofluid than in the other nanofluids. It is observed that the fluid velocity increases with an increase in Grashof number and time. Excellent validation of the present results is achieved with existing results in the literature.


2004 ◽  
Vol 100 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Keisuke Maruyama ◽  
Douglas Kondziolka ◽  
Ajay Niranjan ◽  
John C. Flickinger ◽  
L. Dade Lunsford

Object. Management options for arteriovenous malformations (AVMs) of the brainstem are limited. The long-term results of stereotactic radiosurgery for these disease entities are poorly understood. In this report the authors reviewed both neurological and radiological outcomes following stereotactic radiosurgery for brainstem AVMs over 15 years of experience. Methods. Fifty patients with brainstem AVMs underwent gamma knife surgery between 1987 and 2002. There were 29 male and 21 female patients with an age range of 7 to 79 years (median 35 years). Anatomical locations of these AVMs included the midbrain (39 lesions), pons (20 lesions), and medulla oblongata (three lesions). The radiation dose applied to the margin of the AVM varied from 12 to 26 Gy (median 20 Gy). Forty-five patients were followed up from 5 to 176 months (mean 72 months). The angiographically confirmed actuarial obliteration rate was 66% at the final follow-up examination. Two patients experienced a hemorrhage before obliteration. The annual hemorrhage rate was 1.7% for the first 3 years after radiosurgery and 0% thereafter. Patients who had received irradiation at two or fewer isocenters had higher obliteration rates (80% compared with 44% for > two isocenters, p = 0.006), and this was related to a more spherical nidus shape. The rate of persistent neurological complications in patients treated using magnetic resonance imaging—based dose planning after 1993 was 7%, compared with 20% in patients treated before 1993. An older patient age, a lesion located in the tectum, and a higher radiosurgery-based score were significantly associated with greater neurological complications. Conclusions. Stereotactic radiosurgery provided complete obliteration of AVMs in two thirds of the patients with a low risk of latency-interval hemorrhage. Better three-dimensional imaging studies and conformal dose planning reduced the risk of adverse radiation effects. Younger patients harboring more spherical AVMs that did not involve the tectal plate had the best outcomes.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ubaidullah Yashkun ◽  
Khairy Zaimi ◽  
Nor Ashikin Abu Bakar ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence of suction and thermal radiation effects. Design/methodology/approach Mathematical equations are transformed into pairs of self-similarity equations using similarity transformation. Boundary value problem solver (bvp4c) in MATLAB was adopted to solve the system of reduced similarity equations. In this study, the authors particularly examine the flow and heat transfer properties for different values of suction and thermal radiation parameters using single-phase nanofluid model. A comparison of the present results shows a good agreement with the published results. Findings It is noticed that the efficiency of heat transfer of hybrid nanofluid (Cu-Al2O3/H2O) is greater than the nanofluid (Cu/H2O). Furthermore, it is also found that dual solutions exist for a specific range of the stretching/shrinking parameter with different values of suction and radiation parameters. The results indicate that the skin friction coefficient and the local Nusselt number increase with suction effect. The values of the skin friction coefficient increases, but the local Nusselt number decreases for the first solution with the increasing of thermal radiation parameter. It is also observed that suction and thermal radiation widen the range of the stretching/shrinking parameter for which the solution exists. Practical implications In practice, the investigation on the flow and heat transfer of MHD hybrid nanofluid through a stretching/shrinking sheet with suction and thermal radiation effects is very important and useful. The problems related to hybrid nanofluid has numerous real-life and industrial applications, for example microfluidics, manufacturing, transportation, military and biomedical, etc. Originality/value In specific, this study focused on increasing thermal conductivity using a hybrid nanofluid mathematical model. This paper is able to obtain the dual solutions. To the best of author’s knowledge, this study is new and there is no previous published work similar to present study.


2010 ◽  
Vol 65 (11) ◽  
pp. 950-960 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Qasim

An analysis has been carried out to study the combined effects of heat and mass transfer on the unsteady flow of a micropolar fluid over a stretching sheet. The thermal radiation effects are presented. The arising nonlinear partial differential equations are first reduced to a set of nonlinear ordinary differential equations and then solved by the homotopy analysis method (HAM). Plots for various interesting parameters are presented and discussed. Numerical data for surface shear stress, Nusselt number, and Sherwood number in steady case are also tabulated. Comparison between the present and previous limiting results is given.


2018 ◽  
Vol 35 (6) ◽  
pp. 2234-2254 ◽  
Author(s):  
Zhipeng Duan ◽  
Peng Liang ◽  
Hao Ma ◽  
Niya Ma ◽  
Boshu He

Purpose The purpose of this paper is to numerically investigate the flow characteristics and extend the data of friction factor and Reynolds number product of hydrodynamically developing laminar flow in three-dimensional rectangular microchannels with different aspect ratios. Design/methodology/approach Using a finite-volume approach, the friction factor characteristics of Newtonian fluid in three-dimensional rectangular ducts with aspect ratios from 0.1 to 1 are conducted numerically under no-slip boundary conditions. A simple model that approximately predicts the apparent friction factor and Reynolds number product fappRe is referenced as a semi-theoretical fundamental analysis for numerical simulations. Findings The accurate and reliable results of fappRe are obtained, which are compared with classic numerical data and experimental data, and the simple semi-theoretical model used and all comparisons show good agreement. Among them, the maximum relative error with the classic numerical data is less than 3.9 per cent. The data of fappRe are significantly extended to other different aspect ratios and the novel values of fappRe are presented in the tables. The characteristics of fappRe are analyzed as a function of a non-dimensional axial distance and the aspect ratios. A more effective and accurate fourth-order fitting equation for the Hagenbach's factor of rectangular channels is proposed. Originality/value From the reliable data, it is shown that the values of fappRe and the model can be references of pressure drop and friction factor for developing laminar flow in rectangular channels for researchers and engineering applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
O. D. Makinde ◽  
M. S. Tshehla

This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.


2019 ◽  
Vol 8 (1) ◽  
pp. 661-672
Author(s):  
Pandikunta Sreenivasulu ◽  
Tamalapakula Poornima ◽  
Nandanoor Bhaskar Reddy

Abstract Present analysis is to study the combined effects of viscous dissipation and Joule heating on MHD three-dimensional laminar flow of a viscous incompressible non-linear radiating Casson nanofluid past a nonlinear stretching porous sheet. Present model describes that flow generated by bi-directional non-linear stretching sheet with thermophoresis and Brownian motion effects. The governing nonlinear partial differential equations are transformed into a system of nonlinear coupled ordinary differential equations by similarity transformations and then solved by employing shooting method. The effects of the flow parameters on the velocity, temperature and concentration as well as the skin friction coefficient, Nusselt number and Sherwood number near the wall are computed for various values of the fluid properties. This study reveals that the temperature of Casson nanofluid increases with combination of viscous dissipation and Joule heating. Increasing thermophoresis parameter increases the species concentration of the nanoflow. The comparison of present results have been made with the published work and the results are found to be very good agreement.


2017 ◽  
Vol 34 (8) ◽  
pp. 2499-2513 ◽  
Author(s):  
Umar Khan ◽  
Adnan Abbasi ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din

Purpose This paper aims to explore the flow of nanofluid over bi-directional stretching sheet in the presence of magnetic field and linear thermal radiation. Design/methodology/approach In this study, water is taken as a base fluid, and copper is diluted in the base fluid. Further, four different shapes of nanoparticles are considered for the analysis. The governing nonlinear partial differential equations are transformed into the system of ordinary differential equations after using the feasible similarity transformations. Solution of the model is then performed by means of Runge–Kutta scheme. Findings Influence of the emerging dimensionless parameters on velocity, temperature, skin friction coefficient and local rate of heat transfer are studied with the help of graphs. Originality/value The study is presented in this paper is original and has not been submitted to any other journal for the publication purpose. The contents are original, and proper references have been provided wherever applicable.


Sign in / Sign up

Export Citation Format

Share Document