Evaluation of synergic methods for corrosion protection of reinforced steel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nivin M. Ahmed ◽  
Essam Abdelfattah Mossalam ◽  
Basil El-Sabbagh ◽  
Eglal M.R. Souaya

Purpose This study aims to evaluate the effect of pH on the reinforced concrete steel protection for rebars coated with paint formulations containing talc and free from it. As the presence of talc in paints can offer high pH which cordially affects the protection behavior of the coated rebars. Additionally, this study includes evaluating the durability of concrete mixes in presence of some replacements of ordinary cement such as meta-kaolin (MK) and ground granulated blast furnace slag (GGBFS). Design/methodology/approach Two paint formulations were prepared containing the same ingredients except that (P1) is free from talc and (P2) contains talc. The anticorrosive behavior of painted steel in the blended concrete mixes containing MK and GGBFS was studied by using different electrochemical techniques in chloride solution. The concrete durability was evaluated by the means of compressive and bond strength beside chloride permeability. Different concrete mixes containing mineral groups or pozzolanic materials were prepared by replacing (10, and 30%) GGBFS and (5, 10 and 15%) MK as binary from cement CEM I with (w/b) 0.45 with superplasticizer ratio (SP) 2% of the binder Findings It was found that the presence of talc, in spite of its ability to offer high pH, has affected positively the corrosion behavior of reinforced concrete steel by forming a complex with concrete even if it is present in paint formulation and not free in the medium. Originality/value The results revealed that concrete blended with (30% GGBFS and 10% MK) with coated rebars with P2 containing talc showed the highest corrosion protection performance in addition to modified permeability and compression resistance.

2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


2019 ◽  
Vol 66 (6) ◽  
pp. 774-781 ◽  
Author(s):  
Jeetendra Kumar Malav ◽  
Ramesh C. Rathod ◽  
Vipin Tandon ◽  
Awanikumar P. Patil

Purpose The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO) composites coating. Design/methodology/approach Electroactive polyimide/copper oxide (EPI/CuO) composites were prepared by oxidative coupling polymerization followed by thermal imidization method. Findings The functional and structural properties of composites were characterized by X-ray diffraction, Fourier transmission infra-red and ultra violet-visible spectroscopy and the surface topography was characterized by field emission scanning electron microscope analysis and anticorrosion performance in 3.5 Wt.% NaCl was evaluated by electrochemical techniques. The obtained results of electrochemical techniques measurement indicated that the composites coated samples give better corrosion protection against attacking electrolyte. Originality/value The ever-increasing price of nickel (Ni) is driving the industries to use low-Ni austenitic stainless steels (ASSs). However, it exhibits relatively poor corrosion resistance as compared with conventional Cr-Ni ASSs. Nonetheless, its corrosion resistance can be enhanced by polymeric (electroactive polyimide [EPI]) coating. CuO particles exhibit the hydrophobic properties and can be used as inorganic filler to incorporate in EPI to further enhance the corrosion protection. The present research paper is beneficial for industries to use low-cost AISI 201, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Essam Mossalam ◽  
Nivin M. Ahmed ◽  
Eglal M.R. Souaya ◽  
Basil El-Sabbagh

Purpose The purpose of this research is to study the physical and mechanical properties beside the durability of concrete as well as corrosion resistance of reinforced concrete by replacing Ordinary Portland cement (OPC) with different ratios of silica fume and meta-kaolin and applying two paint formulations to enhance corrosion resistance and mechanical properties. In this work, modified concrete mixes containing pozzolanic materials of industrial wastes such as silica fume (SF) with ratios ranging between (0, 10 and 15%) and calcined raw material such as meta-kaolin (MK) with ratios (0, 3, 5 and 10%), were introduced using water binder ratio (w/b) 0.45 to study their effect on the physico-mechanical properties and durability of concrete as well as corrosion protection performance of reinforced concrete. Two paint formulations containing the same ingredients except that one of them is free from talc (G1) and the other contains talc (G2) were applied on the rebars embedded in these modified mixes. Talc is known to offer high pH to the surrounding media. Design/methodology/approach Modified concrete mixes containing the coated reinforced concrete steel with the different paint formulations in presence and absence of talc were tested, and the corrosion behavior was studied using electrochemical impedance spectroscopy (EIS) in 3.5% NaCl, and the concrete mixes were also tested through their compressive strength, chloride permeability, scanning electron microscope/energy dispersive X-ray analysis and bond strength. Findings The results revealed that the hardened reinforced concrete mix containing 10% SF with 5% MK with embedded rebars coated with G2 (paint containing talc) was the best concrete system which offers concrete sustainability besides high corrosion protection performance, i.e. presence of talc in the paints combined with the effect of cement blended with SF and MK showed positive effect on the reinforced concrete properties that leads to more durability and workability. Originality/value The integrity of using two efficient methods of corrosion protection beside the effect of the different replacements in concrete mixes containing coated reinforced concrete steel with paint formulations free from talc (G1) and others containing talc (G2), which lead to fatal changes in the pH of the surrounding media (i.e. concrete which has high alkaline pH) to achieve good concrete properties aside with convenient paint formulations together.


2016 ◽  
Vol 711 ◽  
pp. 277-284 ◽  
Author(s):  
Walid A. Al-Kutti ◽  
Nabil M. Al-Akhras

This study investigates the durability of partially-damaged concrete with the addition of Silica Fume and Ground Granulated Blast Furnace Slag. Portland cement was replaced by 10% SF and 60% of GGBFS as a replacement of Portland cement. Thirty-six concrete cylinders (100 x 200 mm) were subjected to three compressive loading levels (50%, 75%, and 90% of its ultimate strength capacity). After 28 days of curing, the concrete specimens were experimentally tested for electrical resistivity, rapid chloride penetration (RCPT) and chloride migration coefficient (Dnssm) according to NT-BUILD 494. The experimental results showed that the GGBFS improves significantly the durability of concrete with the highest electrical resistivity and lowest chloride permeability compared to control and SF concrete and both SF and GGBFS had significant effect the concrete durability properties even when the concrete was subjected to compressive damage up to 90% of the compressive strength. A correlation between Dnssm and RCPT in partially damaged concrete was observed and an empirical linear relationship was developed to estimate Dnssm.


2018 ◽  
Vol 65 (4) ◽  
pp. 368-374 ◽  
Author(s):  
Mostafa G. Mohamed ◽  
Nivin M. Ahmed ◽  
Walaa M. Abd El-Gawad

PurposeUsing organic coatings serves as a key method to protect metal structures against corrosion. Attempts have been made to improve the corrosion inhibition of the coatings using novel types of pigments. This study aims to study the application of organic coatings containing rice straw (RS) waste as anticorrosive pigment for corrosion protection of reinforced steel. The RS was used by precipitating a thin layer of ferrite pigments on its surface to improve their characteristics and corrosion resistance activity.Design/methodology/approachThe evaluation of corrosion behavior of coated reinforced steel with paints containing these novel pigments is reported using different electrochemical methods.FindingsThe coatings containing the new prepared RS-ferrite pigments offered good corrosion protection, and coatings containing RS-ZnFe showed the best protection performance.Originality/valueThis paper introduces novel method to prepare treated RS without any burning and to play the role of pigments in anticorrosive paint formulations based on its silica content.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anthony Ikechukwu Obike ◽  
Wilfred Emori ◽  
Hitler Louis ◽  
Godwin Ifeanyi Ogbuehi ◽  
Paul Chukwuleke Okonkwo ◽  
...  

Purpose The purpose of this paper is to study the adsorption properties of a proven traditional medicine of West Africa origin, Alstonia boonei with an attempt to evaluate its application in the corrosion protection of mild steel in 5 M H2SO4 and 5 M HCl. Design/methodology/approach Phytochemical screening and Fourier transform infrared spectroscopy analysis were used to characterize the methanolic extract of the plant. Gravimetry, gasometry and electrochemical techniques were used in the corrosion inhibition studies of the extract and computational studies were used to describe the electronic and adsorption properties of eugenol, the most abundant phytochemical in Alstonia boonei. Findings The extract acted as a mixed-type inhibitor in both acidic solutions, with improved inhibition efficiency achieved with increasing concentration. While the efficiency increased with temperature for the HCl system, it decreased for the H2SO4 system. The mechanism of adsorption proposed for Alstonia boonei was chemisorption in the HCl system and physisorption in the H2SO4 system, and the adsorptions obeyed Langmuir isotherm at low temperatures. Computational parameters showed that eugenol, being a representative of Alstonia boonei, possesses excellent adsorption properties and has the potential to compete with other established plant-based corrosion inhibitors. Research limitations/implications As opposed to pure compounds with distinctive corrosion effects, plant extracts are generally composed of a myriad of phytoconstituents that competitively promote or inhibit the corrosion process and their net effect is evident as inhibition efficiencies. This is, therefore, the main research limitation associated with the corrosion inhibition study of Alstonia boonei. Originality/value Being very rich in antioxidant properties by its proven curative and preventive effects for diseases, the interest was stimulated towards the attractive results that abound from its corrosion protection of metals via its anti-oxidation route.


2016 ◽  
Vol 63 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Zhiming Ma ◽  
Tiejun Zhao ◽  
Jianzhuang Xiao ◽  
Ting Guan

Purpose – Rebar corrosion in reinforced concrete is the major reason for the durability degradation, especially under harsh environment. This paper presents an experiment conducted to investigate the influence of freeze-thaw cycles on the rebar corrosion in reinforced concrete. The purpose of this paper is to provide fundamental information about rebar corrosion under frost environment and improvement measures. Design/methodology/approach – The related elastic modulus and compressive strength of different concrete specimens were measured after different freeze-thaw cycles. The accelerated rebar corrosion test was carried out after different freeze-thaw cycles; additionally, the value of calomel half-cell potential was determined. The actual rebar corrosion appearance was checked to prove the accuracy of the results of calomel half-cell potential. Findings – The results show that frost damage aggravates the rebar corrosion rate and degree under freeze-thaw environment; furthermore, the results become more obvious with the freeze-thaw cycles increasing. Mixing the air-entrained agent into fresh concrete to prepare air-entrained concrete, increasing the cover thickness and processing the surface of concrete with a waterproofing agent can significantly improve the resistance to rebar corrosion. From the actual appearance of rebar corrosion, the results of calomel half-cell potential can well reflect the actual rebar corrosion in reinforced concrete. Originality/value – The durability of reinforced concrete is mainly determined on chloride penetration that brings about rebar corrosion in chloride environments. Furthermore, the degradation of concrete durability becomes more serious in the harsh environment. As the concrete exposure to the freeze-thaw cycles environment, the freeze-thaw cycles accelerate the concrete damage, and the penetration of chloride into the concrete becomes easier because of the growing pore and crack sizes. In addition, rebar corrosion caused by chloride is one of the major forms of environmental attack on reinforced concrete. The tests conducted in this paper will describe the rebar corrosion in reinforced concrete under freeze-thaw environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faid Hayette ◽  
Abadou Yacine ◽  
Ghrieb Abderrahmane

Purpose The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical development of the material, an effort has been made to simulate the structure of the different mortar reinforced by two main layers plants. Design/methodology/approach This paper presents an experimental design of response surface methodology, a model which predicts the mechanical strength and evaluate the effectiveness of bio-waste as a corrosion inhibitor to resist the steel corrosion in air lime mortars as a function of the proportion of the constituents of a new air lime mortar based on a combination of different percentages of marble waste (MRW), air lime and deferent type, layers of natural fiber reinforcement. Luffa sponge gourd and oakum hemp fiber residues capabilities in civil engineering are evaluated by combining numerical and experimental approaches for repair mortar based on air lime and marble waste. Several electrochemical techniques, mechanical strength tests and visual inspection of steel surface were performed. Findings The results revealed good mechanical strength and corrosion protection properties of air lime mortar containing the fiber naturel. These green wastes are considered economically feasible, as well having possessing good performance efficiency in protecting rebar reinforcement. These results were confirmed via polarization curves and electrochemical impedance spectroscopy measurements. Originality/value The prepared green air lime mortar provided good corrosion protection to the rebar. The significance of this study is to encourage the usage of solid white marble waste to prepare biomass-based repair mortar with good mechanical and anti-corrosion properties on the long term is still a big challenge.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Sign in / Sign up

Export Citation Format

Share Document