Poly (vinylcaprolactam)-based Microgels to Improve Gloss Properties of Different Natural Fibres

2014 ◽  
Vol 18 (1) ◽  
pp. 50-63 ◽  
Author(s):  
A.G. Hassabo ◽  
S. Schachschal ◽  
C. Cheng ◽  
A. Pich ◽  
C. Popescu ◽  
...  

Three different thermo-sensitive microgels obtained by the copolymerisation of vinylcaprolactam) (VCL) and various monomers (vinylimidazole(VIm), acetoacetoxyethyl methacrylate (AAEM) and itaconic acid(IA)) are used to coat different fibre surfaces. Two different pHs and two different temperatures, 25°C and 50°C respectively are chosen for the deposition of the microgels. The scanning electron microscopy of the treated fibre shows good distribution of the particles onto the fibres especially at increasing temperatures. The gloss index for the treated fibres has been measured, and showed that it may be controlled for all of the fibres with the treatment parameters (pH and temperature) and the microgel structure.

2015 ◽  
Vol 825-826 ◽  
pp. 838-843
Author(s):  
Moritz Boehm ◽  
Thomas Schmoelzer ◽  
Reinhard Simon ◽  
Christian Gierl-Mayer

Chromium and molybdenum exhibit continuous solubility in the solid phase region at temperatures of 908°C and above [1]. At lower temperatures, the system exhibits a miscibility gap. Furthermore a congruent minimum in the liquidus boundary exists at 1854°C. Chromium and molybdenum powders with different particle morphologies were mixed and porous green parts were produced by pressing. Sintering experiments were performed at different temperatures and for different chromium to molybdenum ratios. To investigate the evolution of the microstructure, sintering was interrupted at different temperatures and points in time. The microstructure and morphology of the sintered parts was investigated by scanning electron microscopy as well as light optical microscopy. It was found that during sintering, a Cr-Mo solid solution is formed. Depending on the molybdenum content, this induces either shrinking or swelling of the porous parts. Samples exhibited a linear expansion of up to 10% and final porosities of up to 65%.


2020 ◽  
Vol 74 (10) ◽  
pp. 1280-1286
Author(s):  
Lucas Train Loureço ◽  
Celso de Araujo Duarte ◽  
Dietmar William Foryta ◽  
Bruno Guimarães Titon ◽  
Eleonora Maria Gouvêa Vasconcellos

The present work reports the results of structural and optical investigations in samples of natural dolomite, subjected to thermal treatment at different temperatures (500 ℃ to 700 ℃) and times (one up to three hours). The motivation is the evaluation of the changes that may occur in carbonaceous asteroids and meteorites, respectively, subjected to the action of the solar radiation and heated during the fall in the atmosphere. We carried out scanning electron microscopy, electron dispersive spectroscopy, X-ray diffraction, optical reflectance and photoluminescence measurements


2007 ◽  
Vol 336-338 ◽  
pp. 669-671
Author(s):  
Yan Yi Liu ◽  
Wei Pan

BaTiO3 powder was synthesized from BaCO3 and TiO2 using a domestic microwave oven. The samples were synthesized under different temperatures with various holding times. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to examine the phase compositions and morphologies of the result samples. The main phase obtained at 950°C was BaTiO3, and the intermediate phases Ba2TiO4 and Ba4TiO9 were also detected. The pure, well-crystallized BaTiO3 powder could be obtained at 1050°C within 10 minutes and the particle size ranged from 300~500nm. In comparison with conventional synthesis, faster speed and finer grains could be achieved through microwave heating.


2009 ◽  
Vol 71-73 ◽  
pp. 381-384
Author(s):  
Tuomas van der Meer ◽  
Jussi Liipo ◽  
Jaakko Leppinen

The effect of different microbial consortia on the leaching of chalcopyrite was studied at different temperatures and solution compositions with Boliden’s Aitik ore in column reactors simulating heap bioleaching. The columns were equipped with sampling chambers and chalcopyrite mineral electrodes in order to investigate the passivation of chalcopyrite. The sampling chambers were filled with agglomerated ore and pieces of chalcopyrite-rich ore. In addition to chemical analysis of the leaching solution and solids the progress of leaching of chalcopyrite was studied by continuous potential measurements with chalcopyrite electrodes. The occurrence and composition of potentially passivating layers on the surfaces of the electrodes and the samples taken from sample chambers were examined by optical and scanning electron microscopy.


2017 ◽  
Vol 891 ◽  
pp. 473-477
Author(s):  
Renáta Verbová ◽  
Viktor Kavečanský ◽  
Pavel Diko ◽  
Samuel Piovarči

Crystalline barium cerate was synthesized by oxalate coprecipitation from nitrates of barium and cerium [1]. The oxalate precursor prepared by chemical methods was calcined at different temperatures up to 950°C. The barium cerate was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction investigation enables the determination of the phases that originate at different stages of synthesis and the crystal structure of final barium cerate, as well. From XRD patterns the average size of coherent regions was estimated by using Halder-Wagner method [2]. Both size and shape of crystallites were also studied by scanning electron microscopy. It was found that crystallites of barium cerate arise within the initial particles of the oxalate precursor.


1993 ◽  
Vol 56 (8) ◽  
pp. 661-665 ◽  
Author(s):  
JEONG-WEON KIM ◽  
MIKE F. SLAVIK ◽  
CARL L. GRIFFIS ◽  
JOEL T. WALKER

Microtopography of chicken skin was studied by varying scalding temperature to determine the least favorable skin surface for salmonellae attachment. Birds were scalded at 52, 56, and 60°C, and the changes of skin morphology were examined by light and transmission electron microscopy throughout the whole processing. Breast skins obtained immediately after picking were inoculated with Salmonella typhimurium, and the attachment was quantified by using scanning electron microscopy and microbiological plating techniques. Skins scalded at 52 and 56°C retained most of the epidermis, although the latter temperature caused the loss of twice as much stratum corneum layers and produced a smoother surface than the former. Skins at 60°C began to lose most of epidermal layers during scalding and exposed dermal surface after picking, which was sometimes covered with thin fragmental epidermis or basal tissue. The number of salmonellae attached to 60°C-processed skins was 1.1~1.3 logs higher than those attached to the skins processed at 52 and 56°C, as measured by scanning electron microscopy. Microbiological plating, however, showed no significant difference in attachment among three skins processed at different temperatures. This was probably due to the insensitivity of the plating method to differentiate attachment strengths of salmonellae to the skin. The above results suggest that removal of whole epidermis should be avoided in processing to reduce salmonellae attachment to the skin.


2014 ◽  
Vol 997 ◽  
pp. 484-487 ◽  
Author(s):  
Zhi Qin Zhong ◽  
Lu Da Zheng ◽  
Guo Jun Zhang ◽  
Shu Ya Wang ◽  
Li Ping Dai ◽  
...  

The authors investigated the effects of annealing in Ar atmosphere at different temperatures (350 °C, 600 °C, and 900 °C) on the thermally oxidized SiO2/4H-SiC interface. A strong correlation between C-related clusters reduction and SiO2/SiC interfacial improvement was observed. The C-related clusters, which were characterized by field-emission scanning electron microscopy, and energy-dispersive spectrometry, can be significantly reduced after annealing at moderate temperature (600 °C). This sample annealed at 600 °C exhibited the best interfacial quality of SiO2/SiC from capacitance–voltage measurement. Based on the studies, improvements in the quality of the SiO2/SiC interface after annealing at 600 °C may be explained by the reduction of C-related clusters during annealing.


2011 ◽  
Vol 287-290 ◽  
pp. 253-256
Author(s):  
Zhan Shen Zheng ◽  
Rui Jiao Li ◽  
Pei Qi Yan ◽  
Rong Yang ◽  
Peng Li

Superhydrophobic film was fabricated mainly by ethyl silicate (TEOS) and ethanol (EtOH) using sol-gel method. SiO2 gel and samples coated with SiO2 sol were calcined at different temperatures, and their morphology and composition were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results indicate that increasing calcining temperature appropriately improved the bond of nanoparticles of film successfully. Furthermore, there were only amorphous SiO2 and hydroxyl existing in the calcined film which would be benefit for the further modification.


Author(s):  
Eleonora Conterosito ◽  
Luca Palin ◽  
Diego Antonioli ◽  
Maria Pia Riccardi ◽  
Enrico Boccaleri ◽  
...  

A graphene-containing LDH was prepared by re-hydration of the oxides produced by the calcination of an organic LDH. While the memory effect is a widely recognized effect on oxides produced by inorganic LDHs, it is unprecedented from the calcination/re-hydration of organic ones. Different temperatures (400, 600 and 1100 °C) were tested, on the basis of thermogravimetric data. Water instead of a carbonate solution was used for the re-hydration, with CO2 available from water itself and/or air to induce a slower process with an easier and better intercalation of the carbonaceous species within the layers. The samples were characterized by X-ray Powder Diffraction (XRPD), IR and Raman spectroscopy and scanning electron microscopy (SEM). XRPD indicate the presence of carbonate LDH mixed with a layered phase with a larger d-spacing. IR confirmed that the prevailing anion is carbonate, coming from the water used for the re-hydration and/or air. Raman data indicated the presence of low-ordered graphenic species moieties and SEM the absence of separated graphene of graphitic sheets, suggesting an intimate mixing of the carbonaceous phase with reconstructed LDH. Organic LDHs gave better memory effect after calcination at 400 °C. Conversely, the graphenic species are observed after rehydration of the sample calcined at 600 °C with a reduced memory effect, demonstrating the interference of the carbonaceous phase with LDH reconstruction and the bonding with LDH layers to form a graphene-LDH nanocomposite.


2019 ◽  
Vol 89 (8) ◽  
pp. 1229
Author(s):  
С.В. Ягупов ◽  
Н.И. Снегирёв ◽  
К.А. Селезнева ◽  
Е.Т. Милюкова ◽  
Ю.А. Могиленец ◽  
...  

Surface morphology and crystal structure of iron borate, FeBO3, annealed at different temperatures, have been studied by scanning electron microscopy and X-ray diffraction analysis. The temperature range of structurally stability of iron borate has been determined. It has been established that in the range of temperatures 800–900°C recrystallization in the iron orthoborate Fe3BO6 phase, and more than 900°C − in α-Fe2O3 phase, occurs.


Sign in / Sign up

Export Citation Format

Share Document