Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication

2017 ◽  
Vol 23 (1) ◽  
pp. 110-121 ◽  
Author(s):  
AmirMahyar Khorasani ◽  
Ian Gibson ◽  
Moshe Goldberg ◽  
Guy Littlefair

Purpose The purpose of this paper is to improve the manufacturing of a prosthetic acetabular shell by analyzing the main factors leading to failure during the selective laser melting (SLM) additive manufacturing (AM) process. Design/methodology/approach Different computer-aided design and computer-aided manufacturing processes have been applied to fabricate acetabular parts. Then, various investigations into surface quality, mechanical properties and microstructure have been carried out to scrutinize the possible limitations in fabrication. Findings Geometrical measurements showed 1.59 and 0.27 per cent differences between the designed and manufactured prototypes for inside and outside diameter, respectively. However, resulting studies showed that unstable surfaces, cracks, an interruption in powder delivery and low surface quality were the main problems that occurred during this process. These results indicate that SLM is an accurate and promising method for production of intricate shapes, provided that the appropriate settings of production conditions are considered to minimize possible limitations. Originality/value The contributions of this paper are discussions covering different issues in the AM fabrication of acetabular shells to improve the mechanical properties, quality and durability of the produced parts.

2016 ◽  
Vol 22 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Changhui Song ◽  
Yongqiang Yang ◽  
Yunda Wang ◽  
Jia-kuo Yu ◽  
Di Wang

Purpose This paper aims to achieve rapid design and manufacturing of personalized total knee femoral component. Design/methodology/approach On the basis of a patient’s bone model, a matching personalized knee femoral component was rapidly designed with the help of computer-aided design method, then manufactured directly and rapidly by selective laser melting (SLM). Considered SLM as manufacturing technology, CoCrMo-alloyed powder that meets ASTM F75 standard is made of femoral component under optimal processing parameters. The feasibility of SLM forming through conducting experimental test of mechanical properties, surface roughness, biological corrosion resistance was analyzed. Findings The result showed that the tensile strength, yield strength, hardness and biological corrosion resistance of CoCrMo-alloyed personalized femoral component fulfill knee joint prosthesis standard through post-processing. Originality/value Traditional standardized prosthesis implantation manufacturing approach was changed by computer-aided design and personalized SLM direct manufacturing, and provided a new way for personalized implanted prosthesis to response manufacturing rapidly.


2014 ◽  
Vol 20 (6) ◽  
pp. 471-479 ◽  
Author(s):  
Mushtaq Khan ◽  
Phill Dickens

Purpose – This paper aims to present the application aspect of the work to manufacturing premolar and molar dental crowns by selective laser melting (SLM) of pure gold. Over the years different metals have been processed using laser-based Additive Manufacturing processes, but very little work has been published on the SLM of gold (Au). Previously published work presented suitable processing parameters for SLM of pure gold. Design/methodology/approach – Suitable processing parameters were used to manufacture premolar and molar dental crowns using SLM system. Different layer thickness was used to analyse the effect on surface quality of crowns. Mechanical properties are checked using nanoindentation and micro Computerized Tomography scanning. Findings – Dental crowns were successfully manufacturing using new build platform and suitable processing parameters. Parts were manufacturing using minimal supports which prevented parts from damaging during removal. A bed temperature of 100°C was found suitable for reducing warpage in the layers. Layer thickness of 50μm was found to have better surface quality and structural integrity as compared to 75μm. Porosity was found to be predominantly inter-layer. Small difference in mechanical properties of dental crowns is associated with the laser processing. Originality/value – This research is the first of its kind which presents dental crown manufacturing using SLM of pure gold.


2018 ◽  
Vol 24 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Hamza Hassn Alsalla ◽  
Christopher Smith ◽  
Liang Hao

Purpose The purpose of this paper is to investigate the density, surface quality, microstructure and mechanical properties of the components of the selective laser melting (SLM) parts made at different building orientations. SLM is an additive manufacturing technique for three-dimensional parts. The process parameters are known to affect the properties of the eventual part. In this study, process parameters were investigated in the building of 316L structures at a variety of building orientations and for which the fracture toughness was measured. Design/methodology/approach Hardness and tensile tests were carried out to evaluate the effect of consolidation on the mechanical performance of specimens. Optical and electron microscopy were used to characterise the microstructure of the SLM specimens and their effects on properties relating to fracture and the mechanics. It was found that the density of built samples is 96 per cent, and the hardness is similar in comparison to conventional material. Findings The highest fracture toughness value was found to be 176 MPa m^(1/2) in the oz. building direction, and the lowest value was 145 MPa m^(1/2) in the z building direction. This was due to pores and some cracks at the edge, which are slightly lower in comparison to a conventional product. The build direction does have an effect on the microstructure of parts, which subsequently has an effect upon their mechanical properties and surface quality. Dendritic grain structures were found in oz. samples due to the high temperature gradient, fast cooling rate and reduced porosity. The tensile properties of such parts were found to be better than those made from conventional material. Originality/value The relationship between the process parameters, microstructure, surface quality and toughness has not previously been reported.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2304 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Janusz Mierzyński

Selective laser melting (SLM) is an additive manufacturing technique. It allows elements with very complex geometry to be produced using metallic powders. A geometry of manufacturing elements is based only on 3D computer-aided design (CAD) data. The metal powder is melted selectively layer by layer using an ytterbium laser. This paper contains the results of porosity and microhardness analysis made on specimens manufactured during a specially prepared process. Final analysis helped to discover connections between changing hatching distance, exposure speed and porosity. There were no significant differences in microhardness and porosity measurement results in the planes perpendicular and parallel to the machine building platform surface.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


2019 ◽  
Vol 26 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Andrzej Pawlak ◽  
Patrycja E. Szymczyk ◽  
Tomasz Kurzynowski ◽  
Edward Chlebus

Purpose This paper aims to discuss the results of material tests conducted on specimens manufactured from AZ31 alloy powder by selective laser melting (SLM) technology. The manufactured specimens were then subjected to porosity assessment, microstructure analysis as well as to mechanical and corrosion tests. Design/methodology/approach SLM process was optimized using the design of experiments tools. Experiments aimed at selecting optimum process parameters were carried out in accordance with a five-level rotatable central composite design. Findings The porosity results showed very low values of <1 per cent, whereas mechanical properties were close to the values reported for the reference wrought AZ31 alloy in hot-rolled state. A fine-grained microstructure was observed with a large range of grain size, which enhanced the material’s mechanical properties. Corrosion characteristics of the SLM-manufactured material exceed those determined for the wrought material. Originality/value The results presented in this paper drive interest in magnesium alloys used in additive manufacturing processes. Low porosity, good mechanical properties, form of the microstructure and, most importantly, improved corrosion characteristics suggest that SLM provides great potential for the manufacture of ultralight structures, including resorbable metallic implants.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2252 ◽  
Author(s):  
Yin ◽  
Jang ◽  
Lee ◽  
Bae

This study compares the mechanical properties and wear ability of five CAD/CAM (computer-aided design/computer-aided manufacturing) millable dental blocks. All the discs, including Amber Mill Hybrid, Vita Enamic, Katana Avencia, Lava Ultimate, and Amber Mill, were cut in dimensions of 1.2 mm in thickness and 12 mm in diameter, polished to a machined surface, and immersed in distilled water for seven days. Vickers hardness was measured and the indentations were observed using microscope. The discs were brushed under a 150 g load. Mean surface roughness (Ra) and topography were determined after 100,000 cycles. Finally the biaxial flexure strength of the discs was measured and the broken surfaces were observed using scanning electron microscopy (SEM). The data was subjected to Weibull analysis. All data were analyzed by one-way analysis (ANOVA). The results of Vickers hardness are shown as: Amber Mill > Vita Enamic > Amber Mill Hybrid > Lava Ultimate > Katana Avencia. Katana Avencia showed the highest volume percentage reduction and the roughest surface after toothbrushing. The biaxial flexural strength is shown as: Amber Mill > Katana Avencia > Lava Ultimate > Amber Mill Hybrid > Vita Enamic. All the tested materials exhibited varying degrees of mass loss and surface roughness. The properties of the composite materials are related to the filler content, filler volume, and polymerization methods.


Author(s):  
Evren Yasa ◽  
Jan Deckers ◽  
Jean-Pierre Kruth ◽  
Marleen Rombouts ◽  
Jan Luyten

Selective laser melting (SLM), a powder metallurgical (PM) additive manufacturing (AM) technology, is able to produce fully functional parts directly from standard metal powders without using any intermediate binders or any additional post-processing steps. During the process, a laser beam selectively scans a powder bed according to the CAD data of the part to be produced and completely melts the powder particles together. Stacking and bonding two-dimensional powder layers in this way, allows production of fully dense parts with any geometrical complexity. The scanning of the powder bed by the laser beam can be achieved in several different ways, one of which is island or sectoral scanning. In this way, the area to be scanned is divided in small square areas (‘sectors’) which are scanned in a random order. This study is carried out to explore the influence of sectoral scanning on density, surface quality, mechanical properties and residual stresses formed during SLM. The experiments are carried out on a machine with an Nd:YAG laser source using AISI 316L stainless steel powder. As a result of this experimental study, it is concluded that sectoral scanning has some advantages such as lower residual stresses and better surface quality. However, the selection of parameters related to sectoral scanning is a critical task since it may cause aligned porosity at the edges between sectors or scanned tracks, which is very undesired in terms of mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document